淡江大學機構典藏:Item 987654321/75774
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 60861/93638 (65%)
造访人次 : 1113997      在线人数 : 17
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/75774


    题名: Evolutionarily adjusting membership functions in Takagi-Sugeno fuzzy systems
    作者: Hong, Tzung-Pei;Lin, Wei-Tee;Chen, Chun-Hao;Ouyang, Chen-Sen
    贡献者: 淡江大學資訊工程學系
    日期: 2011-05
    上传时间: 2012-04-13 18:13:27 (UTC+8)
    出版者: Olney: Inderscience Publishers
    摘要: Fuzzy set theory has been used more and more frequently in intelligent systems because of its simplicity and similarity to human reasoning. It usually uses a fuzzy inference system to handle new cases for making decisions or controlling actions. In the past, Takagi and Sugeno proposed a well-known fuzzy model, namely TS fuzzy model, to improve the precision of inference results. In this paper, we try to automatically adjust the membership functions appropriate for the TS fuzzy model. A GA-based learning algorithm is thus proposed to achieve the purpose. The proposed approach considers the shapes of membership functions in fitness evaluation in addition to the accuracy. The experimental results show that the proposed approach can derive the membership functions in the Takagi-Sugeno system with low errors and good shapes.
    關聯: International Journal of Intelligent Information and Database Systems 5(3), pp.229–245
    DOI: 10.1504/IJIIDS.2011.040087
    显示于类别:[資訊工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    1751-5858_5(3)p229–245.pdf8451KbAdobe PDF181检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈