English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 62805/95882 (66%)
造訪人次 : 3972225      線上人數 : 110
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/75774

    題名: Evolutionarily adjusting membership functions in Takagi-Sugeno fuzzy systems
    作者: Hong, Tzung-Pei;Lin, Wei-Tee;Chen, Chun-Hao;Ouyang, Chen-Sen
    貢獻者: 淡江大學資訊工程學系
    日期: 2011-05
    上傳時間: 2012-04-13 18:13:27 (UTC+8)
    出版者: Olney: Inderscience Publishers
    摘要: Fuzzy set theory has been used more and more frequently in intelligent systems because of its simplicity and similarity to human reasoning. It usually uses a fuzzy inference system to handle new cases for making decisions or controlling actions. In the past, Takagi and Sugeno proposed a well-known fuzzy model, namely TS fuzzy model, to improve the precision of inference results. In this paper, we try to automatically adjust the membership functions appropriate for the TS fuzzy model. A GA-based learning algorithm is thus proposed to achieve the purpose. The proposed approach considers the shapes of membership functions in fitness evaluation in addition to the accuracy. The experimental results show that the proposed approach can derive the membership functions in the Takagi-Sugeno system with low errors and good shapes.
    關聯: International Journal of Intelligent Information and Database Systems 5(3), pp.229–245
    DOI: 10.1504/IJIIDS.2011.040087
    顯示於類別:[資訊工程學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數
    1751-5858_5(3)p229–245.pdf8451KbAdobe PDF212檢視/開啟



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋