English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 60695/93562 (65%)
造訪人次 : 1050497      線上人數 : 38
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/75773

    題名: Hybrid data mining approaches for prevention of drug dispensing errors
    作者: Chen, Lien-Chin;Chen, Chun-Hao;Chen, Hsiao-Ming;Tseng, Vincent S.
    貢獻者: 淡江大學資訊工程學系
    關鍵詞: Dispensing errors;Classification modeling;Decision tree;Logistic regression;Medical risk management
    日期: 2010-06
    上傳時間: 2012-04-13 18:11:51 (UTC+8)
    出版者: New York: Springer New York LLC
    摘要: Prevention of drug dispensing errors is an importance topic in medical care. In this paper, we propose a risk management approach, namely Hybrid Data Mining (HDM), to prevent the problem of drug dispensing errors. An intelligent drug dispensing errors prevention system based on the proposed approach is then implemented. The proposed approach consists of two main procedures: First, the classification modeling and logistic regression approaches are used to derive decision tree and regression function from the given dispensing errors cases and drug databases. In the second procedure, similar drugs are then gathered together into clusters by combing clustering technique (PoCluster) and the extracted logistic regression function. The drugs that may cause dispensing errors will then be alerted through the clustering results and the decision tree. Through experimental evaluation on real datasets in a medical center, the proposed approach was shown to be capable of discovering the potential dispensing errors effectively. Hence, the proposed approach and implemented system serve as very useful application of data mining techniques for risk management in healthcare fields.
    關聯: Journal of Intelligent Information Systems 36(3), pp.305-327
    DOI: 10.1007/s10844-009-0107-6
    顯示於類別:[資訊工程學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數
    0925-9902_36(3)p305-327.pdf1801KbAdobe PDF247檢視/開啟
    0925-9902_36(3)p305-327.pdf1801KbAdobe PDF1檢視/開啟



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋