English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 60696/93562 (65%)
造訪人次 : 1039017      線上人數 : 37
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/75313

    題名: Estimation on the lower confidence limit of the breaking strength percentiles under progressive type II censoring
    作者: Lio, YL;Tsai, Tzong-ru;Chiang, Jyun-you
    貢獻者: 淡江大學統計學系
    關鍵詞: 偏差修正方法;拔靴抽樣;製造工程;逐步設限方法;bias-correction method;bootstrap sample;manufacturing engineering;progressive censoring scheme
    日期: 2012-02
    上傳時間: 2012-03-19 16:51:03 (UTC+8)
    出版者: Pines Industrial Bldg: Chinese Institute of Industrial Engineers
    摘要: The breaking strength information of structure components is highly correlated with the safety manufacturing and much concerned by engineers. Components with deficient safety quality will be rejected to rework or discard due to an unsatisfactory level of the lower critical breaking strength percentile. When the breaking strength of components is assumed to have a Burr type-XII distribution, five parametric bootstrap methods are suggested to adjust the bias of the lower confidence limit estimate of the lower percentile with progressive type-II censored samples. The performance of the proposed bootstrap methods is evaluated through an intensive simulation study. Numerical results show that the hybrid bootstrap method and the bias-corrected and accelerated bias-corrected methods perform better with coverage probabilities near the nominal confidence level for almost all the cases considered. An example of the breaking strength data set of aluminum sheets is used for illustration.
    關聯: Journal of the Chinese Institute of Industrial Engineers 29(1), pp.16-29
    DOI: 10.1080/10170669.2011.654132
    顯示於類別:[統計學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋