English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 56450/90276 (63%)
造訪人次 : 11706837      線上人數 : 45
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/75246

    題名: A Clustering-based Algorithm to Extracting Fuzzy Rules for System Modeling
    作者: Chen, Ching-Yi;Li, Shin-An;Liu, Ta-Kang;Chen, Kuang-Yuan;Wong, Ching-Chang
    貢獻者: 淡江大學電機工程學系
    關鍵詞: Clustering-Based Algorithm;Fuzzy Inference System;System Modeling
    日期: 2011-12
    上傳時間: 2012-03-16 16:31:01 (UTC+8)
    出版者: Korea: Advanced Institute of Convergence IT
    摘要: In this paper, a clustering-based algorithm is proposed for automatically constructing a multi-input fuzzy model where only the input-output data of the identified system are available. The proposed clustering method can automatically yield the number of clusters and its associated cluster centers from the input training data. While the features of training data are extracted by the proposed clustering method, the valuable information on the initial structure of the Sugeno-type fuzzy inference system is built up. For testing the performance of the proposed system modeling method, two wellknow examples from the literature and one real-world data set from the Taiwan's stock market are used to illustrate the validity of the proposed fuzzy system design procedure.
    關聯: International Journal of Advancements in Computing Technology 3(11), pp.394-401
    顯示於類別:[電機工程學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋