English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 60696/93562 (65%)
造访人次 : 1052496      在线人数 : 33
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/75109

    题名: A New Method for Measuring Similarity Between Two GMMs
    作者: Ting, Chuan-Wei;Chen, Li-Ching;He, Chih-Liang
    贡献者: 淡江大學統計學系
    关键词: Similarity between two GMMs;Hypothesis testing;HMM
    日期: 2011-06
    上传时间: 2012-03-13 01:41:25 (UTC+8)
    出版者: Toroku: ICIC International
    摘要: This study presents a new method for measuring similarity between two Gaussian mixture models (GMMs) to discover how to compensate for variations in the topology of adaptive hidden Markov models (HMM). The aims of the proposed scheme is to determine whether a new state topology with different variations should be added to existing acoustic models in response to the addition of training data. The testing of two Gaussian densities is frequently used in the sharing of parameters between Gaussian components of HMM. In this work, we extend such hypothesis to measure similarities between two GMMs and estimate the statistic from the proposed test through the summation of two gamma distributions. A new HMM topology is automatically generated according to a level of significance. The dataset-dependent characteristics and variations are handled with an adaptive HMM topology. Experiments on speech recognition tasks show that the proposed testing scheme performs significantly better than the standard HMM with a comparable size of parameters.
    關聯: ICIC Express Letters 5(6), pp.1839-1844
    显示于类别:[統計學系暨研究所] 期刊論文


    档案 描述 大小格式浏览次数
    1881-803X_5(6)p1839-1844.pdf4805KbAdobe PDF4检视/开启



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈