English  |  正體中文  |  简体中文  |  Items with full text/Total items : 58017/91564 (63%)
Visitors : 13711347      Online Users : 61
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/75057


    Title: Parameter Estimations for Generalized Rayleigh Distribution under Progressively Type-I Interval Censored Data
    Authors: Lio, Y.-L.;Chen, Ding-geng;Tsai, Tzong-ru
    Contributors: 淡江大學統計學系
    Keywords: Maximum Likelihood Estimate;Method of Moments;EM Algorithm;Type-I Interval Censoring
    Date: 2011-07
    Issue Date: 2012-03-11 20:12:30 (UTC+8)
    Publisher: Scientific Research Publishing
    Abstract: In this paper, inference on parameter estimation of the generalized Rayleigh distribution are investigated for progressively type-I interval censored samples. The estimators of distribution parameters via maximum likelihood, moment method and probability plot are derived, and their performance are compared based on simulation results in terms of the mean squared error and bias. A case application of plasma cell myeloma data is used for illustrating the proposed estimation methods.
    Relation: Open Journal of Statistics 1(2), pp.46-57
    DOI: 10.4236/ojs.2011.12006
    Appears in Collections:[Graduate Institute & Department of Statistics] Journal Article

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML30View/Open
    Parameter Estimations for Generalized Rayleigh Distribution under Progressively Type-I Interval Censored Data.pdf656KbAdobe PDF0View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback