淡江大學機構典藏:Item 987654321/74955
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 62569/95225 (66%)
造訪人次 : 2508786      線上人數 : 51
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/74955


    題名: A Smooth Coefficient Quantile Regression Approach to the Social Capital-Economic Growth Nexus
    作者: Deng, Wen-shuenn;Lin, Yi-chen;Gong, Jin-guo
    貢獻者: 淡江大學統計學系;淡江大學經濟學系
    關鍵詞: Semiparametric methods;Kernel smoothing;Smooth coefficient;Quantile regression;Social capital;Economic growth
    日期: 2012-03
    上傳時間: 2012-02-22 09:36:29 (UTC+8)
    出版者: Amsterdam: Elsevier BV * North-Holland
    摘要: This analysis assesses the role of social capital in generating heterogeneity in growth processes across U.S. counties by estimating growth regressions, using the novel semiparametric smooth coefficient quantile regression method in which parameters are unspecified functions of a measure of social capital. The results indicate substantial differences across the quantiles of economic growth in the profile shapes of the coefficient estimates over the level of social capital. Moreover, the coefficient function estimates are highly nonlinear over the level of social capital, providing evidence that the growth process that links initial income, education attainment, ethnic diversity, inequality, population density, and government activity to growth varies with social capital in a nonlinear way.
    關聯: Economic Modelling 29(2), pp.185-197
    DOI: 10.1016/j.econmod.2011.09.008
    顯示於類別:[經濟學系暨研究所] 期刊論文
    [統計學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    0264-9993_29(2)p185-197.pdf1599KbAdobe PDF496檢視/開啟
    A Smooth Coefficient Quantile Regression Approach to the Social Capital-Economic Growth Nexus.pdf2173KbAdobe PDF835檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋