淡江大學機構典藏:Item 987654321/74812
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 60861/93638 (65%)
造访人次 : 1109920      在线人数 : 28
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/74812


    题名: Existence of traveling wave solutions for diffusive predator–prey type systems
    作者: Hsu, Cheng-Hsiung;Yang, Chi-Ru;Yang, Ting-Hui;Yang, Tzi-Sheng
    贡献者: 淡江大學數學學系
    关键词: Traveling wave;Predator–prey;Wazewski Theorem;LaSalleʼs Invariance Principle;Lyapunov function;Hopf bifurcation theory
    日期: 2012-02
    上传时间: 2012-01-20 02:48:27 (UTC+8)
    出版者: Maryland Heights: Academic Press
    摘要: In this work we investigate the existence of traveling wave solutions for a class of diffusive predator–prey type systems whose each nonlinear term can be separated as a product of suitable smooth functions satisfying some monotonic conditions. The profile equations for the above system can be reduced as a four-dimensional ODE system, and the traveling wave solutions which connect two different equilibria or the small amplitude traveling wave train solutions are equivalent to the heteroclinic orbits or small amplitude periodic solutions of the reduced system. Applying the methods of Wazewski Theorem, LaSalleʼs Invariance Principle and Hopf bifurcation theory, we obtain the existence results. Our results can apply to various kinds of ecological models.
    關聯: Journal of Differential Equations 252(4), pp.3040–3075
    DOI: 10.1016/j.jde.2011.11.008
    显示于类别:[數學學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    Existence of traveling wave solutions for diffusive predator–prey type systems.pdf459KbAdobe PDF0检视/开启
    index.html0KbHTML32检视/开启
    JDE2012.pdf459KbAdobe PDF306检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈