淡江大學機構典藏:Item 987654321/74752
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 62822/95882 (66%)
造訪人次 : 4017033      線上人數 : 555
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/74752


    題名: 濕式研磨都市垃圾焚化飛灰程序對鉛之穩定效率及機制探討
    其他題名: A study on the Pb stabilization efficiency and mechanism during the wet ball milling for MSWI fly ash
    作者: 鄭人豪;Cheng, Jen-Hao
    貢獻者: 淡江大學水資源及環境工程學系碩士班
    高思懷
    關鍵詞: 飛灰;研磨;重金屬;穩定;機制;Fly ash;milling;Heavy Metal;stabilization;mechanism
    日期: 2011
    上傳時間: 2011-12-28 19:25:14 (UTC+8)
    摘要: 都市垃圾焚化飛灰具有高鹼度、高氯鹽及大量重金屬的問題,屬於有害事業廢棄物,飛灰中的氯會與重金屬形成易溶出鹽類,因此本研究將水萃程序作為前處理去除大量氯鹽,再以濕式研磨技術穩定重金屬。研究中主要探討飛灰在濕式研磨環境下重金屬穩定效率及機制,並於實驗中添加已知濃度鉛液,觀察重金屬鉛受機械力研磨作用前後相關之變化。由初步水萃灰重金屬溶出結果得知,Pb之TCLP溶出值為9.76 mg/L,逾法規標準,故後續針對Pb討論研磨穩定重金屬。
    由實驗結果得知,1:1混合的研磨球粒徑研磨穩定重金屬效果比單一小尺寸研磨球粒徑佳,另外,水萃灰與10 g/L、40 g/L鉛液經8小時研磨程序再以TCLP的方式萃取,Pb穩定效率分別為93 %、82 %,在水萃灰與40 g/L鉛液共同研磨0-20小時,結果顯示長時間研磨Pb的晶相物種難以被鑑定出,由SEM觀察出研磨灰外觀呈固溶狀,使得重金屬鉛穩定於飛灰中;由數學式推算表示,機械力研磨機制可以增加37-40 %的重金屬鉛穩定效益,化學反應形成穩定化合物只有增加12 %穩定效率,鉛形成穩定吸附可增加18 %穩定效率,最後,XRD鑑定Pb經過8小時研磨由易溶出的Pb7O6Cl2型態轉變為較難溶的PbO2穩定型態,證實機械力研磨作用確實能有效降低重金屬鉛的溶出並穩定於飛灰。
    Municipal solid waste incinerator (MSWI) fly ash with high alkalinity, high chloride and heavy metals problems. The chlorine and heavy metal will form easily dissolved salts in fly ash. In this study, the water extraction procedure as a pre-treatment to remove plenty of chlorine salts. Then stability of heavy metals with wet ball milling technology. The study is to investigate heavy metal stabilization efficiency and mechanism during the wet ball milling for MSWI fly ash. And adding a known concentration of lead fluid in experimental. Observed the lead by mechano-chemical of change. According to the results of water-extracted fly ash leaching of heavy metals, the lead of the leached concentration was 9.76 mg/L. It was higher than with the USEPA regulatory limit of 5mg/L. Therefore, the future tendency is to discuss Pb stabilization by milling.
    According to the experimental results, stabilizing effect of lead using the mixing ratio of milling media 1:1(diameter of milling media is 1 and 5 mm respectively) is better than a single small diameter 1mm milling media. However, the mutual milling of the water-extracted fly ash and concentration 10g/L、40g/L lead fluid was 8 hours and then extractable lead by TCLP. The results show that 93%、82% of lead stabilization efficiency respectively. The water-extracted fly ash and concentration 40g/L lead fluid milled 0-20 hours. The results by XRD analysis showed with the long milled of the lead crystalline particles were hardly to identify. The observation of SEM indicates that milled fly ash to from solid solution which led the lead into fly ash to result in stabilization. According to mathematical projections, mechano-chemical treatment can increase 37-40% stabilization efficiency of heavy metals. Chemical reaction to form a stable compound that only 12% stabilization efficiency of heavy metals. The lead to form a stable adsorption can increase 18% stabilization efficiency of heavy metals. Finally, the results by XRD analysis showed the lead milled 8 hours. The predominant species of lead was identified to be Pb7O6Cl2 into insoluble state PbO2. Confirmed that mechano-chemical treatment can effectively inhibited the elution of lead from fly ash.
    顯示於類別:[水資源及環境工程學系暨研究所] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    index.html0KbHTML221檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋