English  |  正體中文  |  简体中文  |  Items with full text/Total items : 49433/84388 (59%)
Visitors : 7447799      Online Users : 54
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/74742

    Title: 時域中重建二維非均勻介質柱體之研究
    Other Titles: Time domain inverse scattering of 2-D inhomogeneous dielectric cylinders
    Authors: 陳紹仁;Chen, Shoa-Jen
    Contributors: 淡江大學電機工程學系碩士班
    丘建青;Chiu, Chien-Ching
    Keywords: 有限時域差分法;時域逆散射;動態差異演化法;Time Domain Inverse Scattering;Finite Difference Time Domain;Dynamic Differential Evolution
    Date: 2011
    Issue Date: 2011-12-28 19:24:46 (UTC+8)
    Abstract: 本論文研究埋藏於半空間中二維非均勻介質柱體的電磁影像重建。此研究以有限時域差分法 (FDTD) 為基礎,利用最佳化方法於時域中重建埋藏於半空間中二維非均勻介質柱體之特性參數。
    This paper presents the studies of microwave image reconstructions that are approached based on the time-domain technique (finite difference time domain, FDTD) and optimization method for 2-D inhomogeneous dielectric cylinders. The dielectric cylinder is buried in half-space media. For the forward scattering the FDTD method is employed to calculate the scattered E fields, while for the inverse scattering Dynamic Differential Evolution (DDE) is utilized to determine the permittivity of the cylindrical scatterer with arbitrary cross section.
    In order to explore the unknown dielectric cylinder in half-space , an electromagnetic pulse can be conducted to illuminate the cylinder, for which the scattered E fields can then be measured. The inverse problem is then resolved by an optimization approach. The idea is to perform the image reconstruction by utilization of Dynamic Differential Evolution to minimize the discrepancy between the measured and calculated scattered field data. Dynamic Differential Evolution is tested and employed to search the parameter space to determine the permittivity of the dielectric cylinder.
    The suitability and efficiency of applying DDE for microwave imaging of 2D dielectric cylinders are examined in this dissertation. Numerical results show that even when the initial guesses are far away from the exact one, good reconstruction can be obtained by Dynamic Differential Evolution. However, the DDE can reduce the convergent speed in terms of the number of the objective function calls.
    Appears in Collections:[電機工程學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback