English  |  正體中文  |  简体中文  |  Items with full text/Total items : 60932/93628 (65%)
Visitors : 1251164      Online Users : 17
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/74728

    Title: 以軟硬體協同設計之混合型即時影像物體追蹤系統
    Other Titles: Hardware/software co-design of a hybrid object tracking system based on particle filter and particle swarm optimization
    Authors: 林玟玲;Lin, Wen-Ling
    Contributors: 淡江大學電機工程學系碩士班
    易志孝;Yih, Chi-Hsiao
    Keywords: 粒子濾波器;粒子群聚最佳化法;目標物追蹤;軟硬體協同設計;Particle Filter;particle swarm optimization;Object Tracking;SoPC;FPGA;HW/SW co-design
    Date: 2011
    Issue Date: 2011-12-28 19:23:47 (UTC+8)
    Abstract: 本文結合粒子濾波器(Particle Filter)與粒子群聚最佳化演算法(Particle Swarm Optimization, PSO)之優點,提出一種混合型即時影像物體追蹤系統,並於可程式規劃系統晶片(System on Program Chip, SOPC)之系統架構下,利用FPGA(Field Programming Gate Array)的硬體電路優勢,以軟硬體協同設計(HW/SW Co-design)之方式實現硬體加速之功能。作法上係利用所提出之切換機制,當粒子濾波器因物體移動速度太快而追丟時,便切換到PSO做一全域搜尋,而當PSO追蹤到目標物時,再切換到粒子濾波器做快速追蹤功能。並以多主從系統架構來設計硬體加速器,Nios II處理器(Nios II Processor)計算權重值,再以硬體電路進行粒子更新,藉由軟硬體緊密的合作,可以降低Nios II處理器的運算量,提升粒子濾波器與PSO演算法之執行效率,加快執行速度。也由於權重計算有彈性的設計方式,使得在解決各種問題時不需要重新設計硬體。實際結果顯示,利用SOPC軟硬體協同設計的技術所實現之影像物體追蹤系統可獲得良好之即時影像物體追蹤效果。
    This paper presents a hardware/software co-design method for implenting a hybrid object tracking system based on particle filter and Particle Swarm Optimization via System on Program Chip (SOPC) technique. Practice on the system using the proposed switching method When the particle filter lost the tracking because object moving too fast,it will switch to PSO to do a global search. When the PSO to tracking the object, it will switch to the particle filter to do fast tracking. Considering both the execution speed and design flexibility, we use a NIOS II processor to calculate weight for each particle and a hardware accelerator to update particles. As a result, execution efficiency of the proposed hardware/software co-design method of particle filter and Particle Swarm Optimization is significantly improved while maintaining design flexibility for various applications. To demonstrate the performance of the proposed approach, a real-time object tracking system is established and presented in this paper. Experimental results have demonstrated the proposed method have satisfactory results in real-time tracking of objects in video sequences.
    Appears in Collections:[Graduate Institute & Department of Electrical Engineering] Thesis

    Files in This Item:

    File SizeFormat

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback