English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 54059/88902 (61%)
造訪人次 : 10550270      線上人數 : 18
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/74728


    題名: 以軟硬體協同設計之混合型即時影像物體追蹤系統
    其他題名: Hardware/software co-design of a hybrid object tracking system based on particle filter and particle swarm optimization
    作者: 林玟玲;Lin, Wen-Ling
    貢獻者: 淡江大學電機工程學系碩士班
    易志孝;Yih, Chi-Hsiao
    關鍵詞: 粒子濾波器;粒子群聚最佳化法;目標物追蹤;軟硬體協同設計;Particle Filter;particle swarm optimization;Object Tracking;SoPC;FPGA;HW/SW co-design
    日期: 2011
    上傳時間: 2011-12-28 19:23:47 (UTC+8)
    摘要: 本文結合粒子濾波器(Particle Filter)與粒子群聚最佳化演算法(Particle Swarm Optimization, PSO)之優點,提出一種混合型即時影像物體追蹤系統,並於可程式規劃系統晶片(System on Program Chip, SOPC)之系統架構下,利用FPGA(Field Programming Gate Array)的硬體電路優勢,以軟硬體協同設計(HW/SW Co-design)之方式實現硬體加速之功能。作法上係利用所提出之切換機制,當粒子濾波器因物體移動速度太快而追丟時,便切換到PSO做一全域搜尋,而當PSO追蹤到目標物時,再切換到粒子濾波器做快速追蹤功能。並以多主從系統架構來設計硬體加速器,Nios II處理器(Nios II Processor)計算權重值,再以硬體電路進行粒子更新,藉由軟硬體緊密的合作,可以降低Nios II處理器的運算量,提升粒子濾波器與PSO演算法之執行效率,加快執行速度。也由於權重計算有彈性的設計方式,使得在解決各種問題時不需要重新設計硬體。實際結果顯示,利用SOPC軟硬體協同設計的技術所實現之影像物體追蹤系統可獲得良好之即時影像物體追蹤效果。
    This paper presents a hardware/software co-design method for implenting a hybrid object tracking system based on particle filter and Particle Swarm Optimization via System on Program Chip (SOPC) technique. Practice on the system using the proposed switching method When the particle filter lost the tracking because object moving too fast,it will switch to PSO to do a global search. When the PSO to tracking the object, it will switch to the particle filter to do fast tracking. Considering both the execution speed and design flexibility, we use a NIOS II processor to calculate weight for each particle and a hardware accelerator to update particles. As a result, execution efficiency of the proposed hardware/software co-design method of particle filter and Particle Swarm Optimization is significantly improved while maintaining design flexibility for various applications. To demonstrate the performance of the proposed approach, a real-time object tracking system is established and presented in this paper. Experimental results have demonstrated the proposed method have satisfactory results in real-time tracking of objects in video sequences.
    顯示於類別:[電機工程學系暨研究所] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    index.html0KbHTML162檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋