English  |  正體中文  |  简体中文  |  Items with full text/Total items : 49287/83828 (59%)
Visitors : 7151860      Online Users : 72
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/74686


    Title: 拍翼式微飛行器之姿態控制
    Other Titles: Attitude control of flapping-wing MAVs
    Authors: 余政倫;Yu, Cheng-Lun
    Contributors: 淡江大學航空太空工程學系碩士班
    蕭富元
    Keywords: 微型飛行器;立體視覺;姿態控制;控制律;MAV;Stereo Vision;Attitude Control;Control law
    Date: 2011
    Issue Date: 2011-12-28 19:19:05 (UTC+8)
    Abstract: 本論文主要探討拍翼式微飛行器 (Flapping-wing MAVs) 之姿態控制。拍翼式微飛行器近年來已經成為研究的熱門主題,淡江大學微機電實驗室亦長期致力於拍翼式微飛行器的開發。在微飛行器研究的主題中,除了機體本身的開發外,自主飛行亦是眾所矚目的焦點。2010 年初,淡江大學林森煌以金探子微型拍翼機為標的,利用立體視覺作為位置感測器,完成飛行高度控制。本研究在上述工作的基礎上,探討金探子的姿態控制,尤其著重在金探子的偏航控制。首先,由於金探子所使用的通訊系統是市售的通訊模組,因此我們先透過逆工程的方法,解碼出該通訊模組的編碼模式,以作為日後實驗之用。然後,我們在已知的動力學模型上,導出金探子的線性化模型,並經過實驗的方法,量測控制所需的參數。本文亦透過數值模來驗證所設計之控制律是否有效與改進之道。
    This thesis discusses the attitude control of flapping-wing micro-aerial vehicles (MAVs). The researches on flapping-wing MAVs attracted much attention among scientists recently, and the MEMS laboratory in Tamkang University has been devoting herself to the development of flapping-wing MAVs for a long term. Among interesting topics, autonomous flight of flapping-wing MAVs is one of the foci. In 2010, Lin investigated the altitude control of the Golden Snitch, an 8-g flapping-wing robot, collaborating with the stereo-vision navigation algorithm. Based on Lin’s work, this thesis investigates the attitude control of the Golden Snitch, especially focuses on the yawing control. First of all, the communication module is a commercial one without any datasheet. Accordingly, the reverse engineering is applied to decipher the protocol of the communication module for future usage. Provided the dynamics model, we derive the linearized equations of motion (EOM). The parameters in the EOM are obtained via experimental data. Controls are designed to stabilize the attitude, and numerical simulations are provided in this thesis. From numerical simulations we verify the validity of certain controls, and find some problems for further investigation.
    Appears in Collections:[航空太空工程學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML120View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback