本論文我們放寬T-S模糊離散系統穩定化設計之條件。我們利用切換式T-S離散模糊系統並且狀態空間會分割成數個局部空間。利用最大狀態間距的概念及片段連續型李亞普諾夫二次式(piecewise quadratic Lyapunov function)在穩定化設計的過程中將可放寬切換式T-S模糊系統的穩定條件。為了避免計算最大狀態間距及設計控制器時疊代運算的問題,我們使用控制輸入限制的方法計算出最大狀態間距。透過MATLAB LMI toolbox,將可以同時設計出合適的控制器增益值以及找到正定矩陣 。最後,透過數值及實際自走車的模擬證明論文理論為有效的方法。 We relax stabilization conditions for a T-S fuzzy discrete system in this thesis. We use switching T-S fuzzy system and the state space of the T-S fuzzy system is divided into several subregions. We can use the concept of the maximal distance of the two continuous state space and the piecewise quadratic Lyapunov function to relax stabilization conditions for a switching T-S fuzzy system. In order to avoid the problem of the maximal distance of the two continuous state space and control gains iteration computing, we use the method of the constraint of a control input to count maximal distance of the two continuous state space. We design suitable the controller and find out the positive definite matrices at the same time by using MATLAB LMI toolbox. Finally, we utilize the simulations of numerical example and practical example to prove the effectiveness of this method.