English  |  正體中文  |  简体中文  |  Items with full text/Total items : 56378/90242 (62%)
Visitors : 11683942      Online Users : 45
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/74642

    Title: 基於靜態環境的空間限制條件之雙眼視覺式移動物體偵測與追蹤
    Other Titles: Moving object detection and tracking using binocular vision based on spatial constraints of static environment
    Authors: 洪璿凱;Hung, Syuan-Kai
    Contributors: 淡江大學機械與機電工程學系碩士班
    王銀添;Wang, Yin-Tien
    Keywords: 同時定位建圖與移動物體追蹤(SLAMMOT);移動物體偵測;機器人視覺;擴張型卡爾曼過濾器(EKF);simultaneous localization and mapping and moving object detection and tracking (SLAMMOT);moving object detection (MOT);Robot vision;Extended Kalman filter (EKF)
    Date: 2011
    Issue Date: 2011-12-28 19:09:37 (UTC+8)
    Abstract: 本研究使用擴張型卡爾曼濾波器(EKF)發展機器人的雙眼視覺式同時自我定位、建圖、與移動物體追蹤(SLAMMOT)系統。本研究主要內容為利用地圖特徵在空間中的位置限制條件,發展不依賴估測器的資料關聯與地圖管理程序,以避免狀態估測錯誤所引起的不良效應。其次利用此位置限制條件,規劃偵測移動物體的演算法。所發展的演算法最後與卡爾曼濾波器整合成為雙眼視覺式EKF SLAMMOT系統,在室內環境中測試,成功執行路徑閉合、SLAM任務、以及移動物體偵測與追蹤的功能。
    This thesis presents a visual simultaneous localization, mapping and moving object tracking (SLAMMOT) based on extended Kalman filter (EKF). First, we use the geometric constraints of static landmarks in three-dimensional space to design the algorithms of data association and map management. Since these algorithms are independent of the EKF estimator, the SLAMMOT system can recover from the problem of robot kidnapped automatically. Second, we use the same geometric constraints to develop the algorithm for moving object detection. The developed algorithms are integrated with the EKF estimator to carry out the experiments of SLAMMOT tasks in indoor environments.
    Appears in Collections:[Graduate Institute & Department of Mechanical and Electro-Mechanical Engineering] Thesis

    Files in This Item:

    File SizeFormat

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback