薄膜蒸餾(Membrane Distillation, MD)是利用一多孔性疏水薄膜,在薄膜兩側提供溫度之差異,藉以因水之蒸汽壓差產生水之傳輸,達到將水純化之目的。太陽輻射所提供之低溫熱源與薄膜蒸餾海水淡化之結合提供了可同時解決能源與水資源不足問題的解決方案。本論文針對太陽能驅動薄膜蒸餾海水淡化系統進行了模擬與實驗研究。在薄膜蒸餾模組層次,本研究探討了傳統的氣隔式薄膜蒸餾模組(AGMD)和兩個具太陽能吸收功能之創新模組(SAF-AGMD),後者可獲提升純水通量30%-50%之效果。利用經驗證之薄膜蒸餾模式進而分析了文獻報導之大尺寸螺捲式與平板式模組,針對冷、熱流體層、薄膜層與氣隔層之阻力分析指出了性能改善應著重處,針對各裝置參數與操作條件之敏感度分析則指出性能提升的重要參數與條件。在太陽能驅動薄膜蒸餾海水淡化整體系統層次,也建立了一個實驗室小規模系統,主要設備包括太陽能集熱器、儲熱槽、熱交換器、薄膜蒸餾模組與控制系統。針對整體系統完成了動態操作實驗與模擬,包括手動與自動。利用經驗證之整體系統模式,也完成了最佳化操作分析,可獲高出約50%之純水產量。 Membrane distillation is a feasible technology for desalination by utilizing the vapor pressure difference across a hydrophobic membrane via temperature driving force. The integration of the low-temperature solar thermal energy with the membrane distillation provides a way to simultaneously solving the energy and water resource problems. This thesis accomplishes both experimental and simulation studies on the solar-driven membrane distillation desalination system. For three membrane distillation modules, including a conventional air gap membrane distillation (AGMD) and two innovative modules with solar absorption function (SAF-AGMD), the SAF-AGMD modules can provide flux enhancement by 30-50%. Using the verified mathematical model, for two large scale modules reported in the literature, a spiral wound type and a flat plate type, the resistance analysis and the parameter study reveal the significant layers as well as the device parameters and operation conditions for performance improvement. In overall system level, a small laboratory-scale system is established, which includes the solar collector, thermal storage tank, heat exchanger and membrane distillation module, as well as the control system. Dynamic operations of the system, including manual and automatic, have been accomplished. By employing the verified overall system model, the optimization analysis gives the maximum pure water production rate which is enhanced by 50%.