English  |  正體中文  |  简体中文  |  Items with full text/Total items : 51510/86705 (59%)
Visitors : 8261691      Online Users : 103
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/74415


    Title: 線上拍賣潛伏期詐騙者之有效偵測
    Other Titles: Effective detection for latent fraudsters in online auctions
    Authors: 鄭孝儒;Cheng, Hsiao-Ju
    Contributors: 淡江大學資訊管理學系碩士班
    張昭憲;Chang, Jau-Shien
    Keywords: 潛伏期詐騙者;網路詐騙;線上拍賣;電子商務;Latent fraudsters;online auction fraud;Online Auction;e-commerce
    Date: 2011
    Issue Date: 2011-12-28 18:35:04 (UTC+8)
    Abstract: 隨著線上拍賣的盛行,相關詐騙事件也開始層出不窮。學者們對此紛紛提出各種不同的詐騙偵測方法,期能協助消費者安心使用便利的網路拍賣平台。他們提出的方法雖然有效,但似乎只針對現行犯,對於潛伏期的詐騙者則無法有效處理。但就詐騙防治而言,事發於未然最為重要,等受害者真正出現才發出警訊,恐怕事倍功半。有鑑於此,本研究針對潛伏期詐騙者,發展了一套有效的偵測方法。首先,為了增加偵測結果的準確性,我們提出了一套新的分類屬性集。接著,為了分辨潛伏期的詐騙者,本研究以終點回溯的方式來切割交易歷史紀錄,擷取詐騙者在潛伏時期的特徵。為進一步提升偵測效能,本研究更發展了一套二階段篩選方法,結合不同的回溯模型進行連續過濾。我們由Yahoo! Taiwan蒐集實際的交易資料進行實驗。由實驗結果可知,配合回溯切割方法,本研究提出之屬性集所建立之偵測模型的召回率與精度均超過85%,優於前人研究。當使用二階段偵測流程時,精度與召回率更可提升至89%以上。上述結果顯示,本研究提出之方法對於潛伏詐騙者確有良好的偵測能力,若能實際應用在網路拍賣上,必能協助消費者避開詐騙,安心進行交易。
    The online auction fraud is becoming a serious problem in recent years. In Yahoo!Taiwan, about 12,000 fraud cases have been reported in the past two years. Researchers have proposed a lot of useful detection methods to help the trader in avoiding online auction frauds. However, these methods proposed in the related work do not consider an important issue in fraud detection, that is, they are not designed for detecting latent fraudsters. In view of fraud prevention, we need recognize the fraudsters before they become fraudster actually. To detect latent fraudsters effectively, this study first proposed a set of new attributes to model the fraudsters. Then, an endpoint-backtrack method is developed to build detection models for latent fraudsters. In addition, a two-phased detection flow is designed to improve the overall accuracy. To demonstrate the effectiveness of the proposed method, we collect real transaction data from Yahoo! Taiwan auction sites and conduct a series of experiments. The results show that, in comparison with other work, our method can provide better precision and recall rate for latent fraudster detection.
    Appears in Collections:[資訊管理學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML154View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback