English  |  正體中文  |  简体中文  |  Items with full text/Total items : 51296/86402 (59%)
Visitors : 8156474      Online Users : 96
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/74187


    Title: 由某些特殊函數所建構的正線性算子暨一些差分方程之研究
    Other Titles: Certain positive linear operators constructed by some special functions and some difference equations
    Authors: 蔡育典;Tasi, Yu-Dian
    Contributors: 淡江大學數學學系碩士班
    陳功宇
    Keywords: 差分方程式;Difference Equations
    Date: 2011
    Issue Date: 2011-12-28 18:14:09 (UTC+8)
    Abstract: 我們主要是研究下列型態的差分方程式有界解和無界解的存在性及行為。
    a_(n)=a_(n+1)-c_(n){[a_(n+1)]^2-S^2}
    ,其中{c_(n)}是已知數列,n≧1。
    我們得知當正項級數sum_{n=1}^infinity c_(n)收斂,則有有界解存在,且皆為單調。
    而正項級數sum_{n=1}^infinity c_(n)發散,則沒有無界解。
    最後我們討論當sum_{n=1}^infinity c_(n)不是正項級數時,解的存在及行為。
    For sequence , {c_(n)}, we consider the following difference equation.
    a_(n)=a_(n+1)-c_(n){[a_(n+1)]^2-S^2}.
    We will apply the method of backward induction to establish the existence, the uniqueness and behavior of the solution under certain conditions.
    We know that the difference equation has bounded monotone solution if the positive series sum_{n=1}^infinity c_(n) is convergent.
    However, the difference equation has no unbounded solution if the positive series sum_{n=1}^infinity c_(n) is divergent.
    Finally, we consider the existence, the uniqueness and behavior of the solution of the difference equation under sum_{n=1}^infinity c_(n) is not positive series.
    Appears in Collections:[數學學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML117View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback