English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 52514/87720 (60%)
造访人次 : 9362499      在线人数 : 264
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/74187


    题名: 由某些特殊函數所建構的正線性算子暨一些差分方程之研究
    其它题名: Certain positive linear operators constructed by some special functions and some difference equations
    作者: 蔡育典;Tasi, Yu-Dian
    贡献者: 淡江大學數學學系碩士班
    陳功宇
    关键词: 差分方程式;Difference Equations
    日期: 2011
    上传时间: 2011-12-28 18:14:09 (UTC+8)
    摘要: 我們主要是研究下列型態的差分方程式有界解和無界解的存在性及行為。
    a_(n)=a_(n+1)-c_(n){[a_(n+1)]^2-S^2}
    ,其中{c_(n)}是已知數列,n≧1。
    我們得知當正項級數sum_{n=1}^infinity c_(n)收斂,則有有界解存在,且皆為單調。
    而正項級數sum_{n=1}^infinity c_(n)發散,則沒有無界解。
    最後我們討論當sum_{n=1}^infinity c_(n)不是正項級數時,解的存在及行為。
    For sequence , {c_(n)}, we consider the following difference equation.
    a_(n)=a_(n+1)-c_(n){[a_(n+1)]^2-S^2}.
    We will apply the method of backward induction to establish the existence, the uniqueness and behavior of the solution under certain conditions.
    We know that the difference equation has bounded monotone solution if the positive series sum_{n=1}^infinity c_(n) is convergent.
    However, the difference equation has no unbounded solution if the positive series sum_{n=1}^infinity c_(n) is divergent.
    Finally, we consider the existence, the uniqueness and behavior of the solution of the difference equation under sum_{n=1}^infinity c_(n) is not positive series.
    显示于类别:[數學學系暨研究所] 學位論文

    文件中的档案:

    档案 大小格式浏览次数
    index.html0KbHTML135检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈