English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 49647/84944 (58%)
造訪人次 : 7709754      線上人數 : 53
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/74186


    題名: 圖的特徵多項式之探討
    其他題名: The study of the characteristic polynomial of graphs
    作者: 李明峯;Li, Ming-Feng
    貢獻者: 淡江大學中等學校教師在職進修數學教學碩士學位班
    高金美
    關鍵詞: 鄰接矩陣;行列式;遞迴關係;特徵多項式;adjacency matrix;determinant;recursive relation;Characteristic polynomial
    日期: 2011
    上傳時間: 2011-12-28 18:13:51 (UTC+8)
    摘要: 假設A是n階方陣,A的特徵多項式為p(A,x)=det(xI-A),其中I是n階單位方陣。令G為一含有n個點的簡單圖且A(G)為圖G的鄰接矩陣, 我們稱A(G)的特徵多項式為G的特徵多項式,記為p(G,x)=det(xI-A(G)),其中I是n階單位方陣。
    在本論文中我們直接計算出完全圖與星圖的特徵多項式,對於路徑與迴圈我們可得其遞迴關係式;由前面的計算我們得到行列式的化簡與圖之間的關係,推導出圖中含有degree 1的點或含有degree 2的點及含有一個橋的特徵多項式,可經由子圖的特徵多項式而獲得。我們利用已經獲得的結果,推得一些特殊圖的特徵多項式或其遞迴關係式。
    Let A be a matrix of order n. The characteristic polynomial of A is p(A)=det(xI-A) where I is the identity matrix of order n. Let G be a simple graph and A(G) is the adjacency matrix of G. We call the characteristic polynomial of A(G) is the characteristic polynomial of G, denoted by p(G)=det(xI-A(G)), where I is the identity matrix of order n.
    In this thesis, we directly calculate the characteristic polynomial of complete graphs and star graphs. For paths and cycles, we get the recurrence relation of their characteristic polynomial. From the above calculation, we obtain the relation between the simplification of determinants and their subgraphs. We get the characteristic polynomials of the graph with a vertex of degree 1, a vertex of degree 2, or a bridge by the characteristic polynomial of their subgraphs. We use these results to get the characteristic polynomial of some special graphs directly or from the recurrence relation.
    顯示於類別:[數學學系暨研究所] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    index.html0KbHTML109檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋