English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 52092/87247 (60%)
造访人次 : 8926293      在线人数 : 57
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/74186


    题名: 圖的特徵多項式之探討
    其它题名: The study of the characteristic polynomial of graphs
    作者: 李明峯;Li, Ming-Feng
    贡献者: 淡江大學中等學校教師在職進修數學教學碩士學位班
    高金美
    关键词: 鄰接矩陣;行列式;遞迴關係;特徵多項式;adjacency matrix;determinant;recursive relation;Characteristic polynomial
    日期: 2011
    上传时间: 2011-12-28 18:13:51 (UTC+8)
    摘要: 假設A是n階方陣,A的特徵多項式為p(A,x)=det(xI-A),其中I是n階單位方陣。令G為一含有n個點的簡單圖且A(G)為圖G的鄰接矩陣, 我們稱A(G)的特徵多項式為G的特徵多項式,記為p(G,x)=det(xI-A(G)),其中I是n階單位方陣。
    在本論文中我們直接計算出完全圖與星圖的特徵多項式,對於路徑與迴圈我們可得其遞迴關係式;由前面的計算我們得到行列式的化簡與圖之間的關係,推導出圖中含有degree 1的點或含有degree 2的點及含有一個橋的特徵多項式,可經由子圖的特徵多項式而獲得。我們利用已經獲得的結果,推得一些特殊圖的特徵多項式或其遞迴關係式。
    Let A be a matrix of order n. The characteristic polynomial of A is p(A)=det(xI-A) where I is the identity matrix of order n. Let G be a simple graph and A(G) is the adjacency matrix of G. We call the characteristic polynomial of A(G) is the characteristic polynomial of G, denoted by p(G)=det(xI-A(G)), where I is the identity matrix of order n.
    In this thesis, we directly calculate the characteristic polynomial of complete graphs and star graphs. For paths and cycles, we get the recurrence relation of their characteristic polynomial. From the above calculation, we obtain the relation between the simplification of determinants and their subgraphs. We get the characteristic polynomials of the graph with a vertex of degree 1, a vertex of degree 2, or a bridge by the characteristic polynomial of their subgraphs. We use these results to get the characteristic polynomial of some special graphs directly or from the recurrence relation.
    显示于类别:[數學學系暨研究所] 學位論文

    文件中的档案:

    档案 大小格式浏览次数
    index.html0KbHTML119检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈