English  |  正體中文  |  简体中文  |  Items with full text/Total items : 49378/84106 (59%)
Visitors : 7382502      Online Users : 50
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/74186


    Title: 圖的特徵多項式之探討
    Other Titles: The study of the characteristic polynomial of graphs
    Authors: 李明峯;Li, Ming-Feng
    Contributors: 淡江大學中等學校教師在職進修數學教學碩士學位班
    高金美
    Keywords: 鄰接矩陣;行列式;遞迴關係;特徵多項式;adjacency matrix;determinant;recursive relation;Characteristic polynomial
    Date: 2011
    Issue Date: 2011-12-28 18:13:51 (UTC+8)
    Abstract: 假設A是n階方陣,A的特徵多項式為p(A,x)=det(xI-A),其中I是n階單位方陣。令G為一含有n個點的簡單圖且A(G)為圖G的鄰接矩陣, 我們稱A(G)的特徵多項式為G的特徵多項式,記為p(G,x)=det(xI-A(G)),其中I是n階單位方陣。
    在本論文中我們直接計算出完全圖與星圖的特徵多項式,對於路徑與迴圈我們可得其遞迴關係式;由前面的計算我們得到行列式的化簡與圖之間的關係,推導出圖中含有degree 1的點或含有degree 2的點及含有一個橋的特徵多項式,可經由子圖的特徵多項式而獲得。我們利用已經獲得的結果,推得一些特殊圖的特徵多項式或其遞迴關係式。
    Let A be a matrix of order n. The characteristic polynomial of A is p(A)=det(xI-A) where I is the identity matrix of order n. Let G be a simple graph and A(G) is the adjacency matrix of G. We call the characteristic polynomial of A(G) is the characteristic polynomial of G, denoted by p(G)=det(xI-A(G)), where I is the identity matrix of order n.
    In this thesis, we directly calculate the characteristic polynomial of complete graphs and star graphs. For paths and cycles, we get the recurrence relation of their characteristic polynomial. From the above calculation, we obtain the relation between the simplification of determinants and their subgraphs. We get the characteristic polynomials of the graph with a vertex of degree 1, a vertex of degree 2, or a bridge by the characteristic polynomial of their subgraphs. We use these results to get the characteristic polynomial of some special graphs directly or from the recurrence relation.
    Appears in Collections:[數學學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML106View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback