English  |  正體中文  |  简体中文  |  Items with full text/Total items : 52310/87426 (60%)
Visitors : 9080956      Online Users : 321
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/74184

    Title: 樹的特徵值譜的探討
    Other Titles: The study of the spectrum for eigenvalues of trees
    Authors: 莊銘宏;Chuang, Ming-Hung
    Contributors: 淡江大學中等學校教師在職進修數學教學碩士學位班
    Keywords: 匹配;最大匹配;完美匹配;幾乎完美匹配;Matching;maximum matching;perfect matching;nearly perfect matching
    Date: 2011
    Issue Date: 2011-12-28 18:13:47 (UTC+8)
    Abstract: 在圖G=(V,E)中,由E中不共用頂點的邊所成的集合稱為G的一個匹配,含有邊數最多的匹配稱為G的最大匹配。一個最大匹配的個數稱為G的匹配數。令M是G的一個最大匹配。如果G的每個頂點都可以在M中找到一個以其為端點的邊,則稱M是G的一個完美匹配,此時2|M|=|V(G)|。如果存在唯一一個點無法在M中找到一個以其為端點的邊,則稱M是G的一個幾乎完美匹配,此時2|M|+1=|V(G)|。一個不含迴路的連通圖,稱為樹。在本論文中我們探討具有幾乎完美匹配的所有樹的鄰接矩陣和Laplacian矩陣的最大特徵值的上界和下界,首先,我們找出8個具有幾乎完美匹配的樹,且其最大特徵值可能為最大者,經由計算它們的特徵多項式及最大特徵值,而得到了具有幾乎完美匹配的所有樹的最大特徵值的上界及下界。
    Let G=(V,E) be a graph. A set of pairwise vertex disjoint edges of G is called a matching of G. A matching of maximum cardinality is called a maximum matching of G. The cardinality of a maximum matching of G is called the matching number of G. Let M be a maximum matching of G. If every vertex of G is saturated by M, then we call M a perfect matching of G, i.e. 2|M|=|V(G)|. If there exists only one vertex not saturated by M, then we call M a nearly perfect matching of G, i.e. 2|M|+1=|V(G)|.
    In this thesis, we mainly discuss an upper bound and a lower bound of the largest adjacency eigenvalues and Laplacian eigenvalues of trees with nearly perfect matchings. First we find eight trees which may contain the maximum of the largest eigenvalue of all trees with a nearly perfect matching. We calculate the characteristic polynomials and eigenvalues of their adjacency matrices and Laplacian matrices separately. We get an upper bound and a lower bound of trees with nearly perfect matchings from there.
    Appears in Collections:[數學學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback