English  |  正體中文  |  简体中文  |  Items with full text/Total items : 51931/87076 (60%)
Visitors : 8496293      Online Users : 110
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/74182


    Title: 低維度代數曲線之Puiseux展開式之計算
    Other Titles: Computation of low dimensional Puiseux expansion of algebraic curves
    Authors: 林士翔;Lin, Shi-Shung
    Contributors: 淡江大學數學學系碩士班
    吳孟年;Wu, Meng-Nien
    Keywords: Puiseux 展開式;代數曲線;Puiseux expansion;algebraic curve
    Date: 2011
    Issue Date: 2011-12-28 18:13:43 (UTC+8)
    Abstract: 若方程式 f(x,y) = a0(x)+a1(x)*y+a2(x)*y2+...+an(x)*yn = 0, ai(x)∈C(x)∗, 我們要找出解 y(x) = x^{r1}(c1 + x^{r2}(c2 + x^{r3}(c3 + ...))), r2,r3,r4,...> 0, 並討論 y(x) 分支的情形以及何時會出現 {r1,r2,r3,...} 的最小公分母, 最後再算 y(x) 的收斂範圍。
    If we have an equation that is f(x,y) = a0(x)+a1(x)*y+a2(x)*y2+...+an(x)*yn = 0, ai(x)∈C(x)∗, we want to find solutions which are of the form x^{r1}(c1 + x^{r2}(c2 + x^{r3}(c3 + ...))), r2,r3,r4,...> 0, and we will discuss the bifurcation of y(x) and when the lowest common denominator of {r1,r2,r3,...} appears. Finally, we compute the range of convergence of y(x) expansion.
    Appears in Collections:[數學學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML105View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback