English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 49378/84106 (59%)
造訪人次 : 7368488      線上人數 : 65
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/74182


    題名: 低維度代數曲線之Puiseux展開式之計算
    其他題名: Computation of low dimensional Puiseux expansion of algebraic curves
    作者: 林士翔;Lin, Shi-Shung
    貢獻者: 淡江大學數學學系碩士班
    吳孟年;Wu, Meng-Nien
    關鍵詞: Puiseux 展開式;代數曲線;Puiseux expansion;algebraic curve
    日期: 2011
    上傳時間: 2011-12-28 18:13:43 (UTC+8)
    摘要: 若方程式 f(x,y) = a0(x)+a1(x)*y+a2(x)*y2+...+an(x)*yn = 0, ai(x)∈C(x)∗, 我們要找出解 y(x) = x^{r1}(c1 + x^{r2}(c2 + x^{r3}(c3 + ...))), r2,r3,r4,...> 0, 並討論 y(x) 分支的情形以及何時會出現 {r1,r2,r3,...} 的最小公分母, 最後再算 y(x) 的收斂範圍。
    If we have an equation that is f(x,y) = a0(x)+a1(x)*y+a2(x)*y2+...+an(x)*yn = 0, ai(x)∈C(x)∗, we want to find solutions which are of the form x^{r1}(c1 + x^{r2}(c2 + x^{r3}(c3 + ...))), r2,r3,r4,...> 0, and we will discuss the bifurcation of y(x) and when the lowest common denominator of {r1,r2,r3,...} appears. Finally, we compute the range of convergence of y(x) expansion.
    顯示於類別:[數學學系暨研究所] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    index.html0KbHTML91檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋