English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 51931/87076 (60%)
造訪人次 : 8489229      線上人數 : 151
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/74180


    題名: 基於不同相似尺度之多元整合式分群法於基因表現資料的群集分析
    其他題名: Multiple ensemble clustering based on different similarity measures for gene expression data
    作者: 李牧學;Li, Mu-Hsueh
    貢獻者: 淡江大學數學學系碩士班
    吳漢銘;Wu, Han-Ming
    關鍵詞: 群集分析;相關係數;整合式分群;相似尺度;階層式分群法;K 均值法;分割環繞物件法;一致性分群法;Clustering;consensus clustering;ensemble clustering;gene expression;hierarchical clustering tree;K-means;partitioning around medoids;similarity measures
    日期: 2011
    上傳時間: 2011-12-28 18:13:39 (UTC+8)
    摘要: 微陣列資料群集分析的目的是為了找出在不同的實驗條件之下具有相似功能的基因表現。不同的相似尺度之下, 與使用不同的群集分析方法皆可導致不同的分群結果。本研究中,我們使用Pearson、Kendall、Spearman 三種不同的相關係數以及歐式距離尺度, 分別運行階層分群樹(HCT)、K均值(K-means)、分割環繞物件法(PAM)、一致性分群法(Consensus clustering) 與整合式分群法(Ensemble clustering) 。我們整合這些群集結果, 得到資料最後的分群, 期望得到較穩定的分群結果, 我們將以一組模擬資料與一組微陣列基因資料來說明與討論我們所提的方法。
    Unsupervised clustering methods have been widely applied to the analysis of gene expression data to identify biologically relevant groups of genes. Using different
    clustering algorithms with various similarity measures usually results in quite different gene clusters. To lessen these effects, we propose a new clustering method by integrating various clustering algorithms based on three similarity measures. The proposed method, which we called the multiple ensemble clustering, averages the consensus results from the hierarchical clustering, the K-means, and the partitioning around medoids based on the Pearson rho, Kendall tau, and Spearman rank correlations. We use a simulated and a real data set to illustrate the proposed
    method. The validity indices indicate that the multiple ensemble clustering provide a much more stable clustering result.
    顯示於類別:[數學學系暨研究所] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    index.html0KbHTML119檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋