English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 52507/87668 (60%)
造訪人次 : 9350749      線上人數 : 264
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/74172


    題名: 現狀數據在比例勝算比模型下之概似比檢定
    其他題名: Likelihood ratio test for proportional odds model with current status data
    作者: 柯興杰;Ke, Hsing-Chen
    貢獻者: 淡江大學數學學系碩士班
    溫啓仲
    關鍵詞: 現狀數據;概似比檢定統計量;自身一致方程式;Current Status Data;likelihood ratio test statistic;self-consistency equations
    日期: 2011
    上傳時間: 2011-12-28 18:13:05 (UTC+8)
    摘要: 現狀數據為一種區間設限資料,其觀察值僅包括檢查時間和事件發生時間是否在檢查時間之前發生。探討事件發生時間和共變量之間的關係之半母數迴歸方法,在現狀數據中已被廣泛地研究。在本論文中,我們考慮在比例勝算比模型下之現狀數據,對於共變量效應之概似比檢定。並提出一個簡單的演算法則來計算此檢定量。此演算法是根據一系列的自身一致方程式且我們利用收縮原理來證明其收斂性。我們進行了模擬計算並分析兩筆真實數據,來說明此概似比檢定量之卡方漸進性的適當性和此演算法的可行性。
    Current status data result from a simple form of interval censoring in which the observation consists only of an examination time and knowledge of whether the failure time has occurred before the exam. Semiparametric regression methods which examine the relationship between the failure time and covariates have been studied extensively for current status data. In this thesis, we consider the likelihood ratio test for testing covariate effect under the proportional odds model with current status data and propose an easily implemented algorithm for computing the statistics. The algorithm proposed is based on a set of self-consistency equations and its convergence is proved by contraction principle. The adequacy of the Chi-squared approximation for likelihood ratio statistics and the availability of the algorithm are demonstrated in simulation studies and in the analyses of two real data.
    顯示於類別:[數學學系暨研究所] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    index.html0KbHTML167檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋