English  |  正體中文  |  简体中文  |  Items with full text/Total items : 49258/83761 (59%)
Visitors : 7140369      Online Users : 108
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/74166


    Title: On hermite-hadamard type inequalities for functions whose derivatives are s-convex in the second sense
    Other Titles: 有關導數為第二類s-凸函數的Hermite-Hadamard不等式的研究
    Authors: 洪秋月;Hung, Chiu-Yueh
    Contributors: 淡江大學中等學校教師在職進修數學教學碩士學位班
    楊國勝;Yang, Gou-Sheng
    Keywords: 凸函數;s-凸函數;Hadamard不等式;convex;s-convex;Hadamard’s inequality
    Date: 2011
    Issue Date: 2011-12-28 18:12:43 (UTC+8)
    Abstract: 對所有凸函數 ,則下列不等式恆成立
    . (1.1)
    即稱為Hadamard不等式。
    我們注意到J. Hadamard不是第一個發現此不等式。正如D.S. Mitrinović和 I.B. Lačković所指出,C.Hermite比J. Hadamard早就在10年前於1883年就發現此不等式。
    Hudzik 和 Mailgranda 研究另一型態的s-凸函數,並稱為第二類s-凸函數,這種類型的函數定義如下: 對一些固定實數 而言,若函數 滿足對所有 和 [0,1],下列不等式恆成立:

    則此函數稱為第二類s-凸函數,記作 。
    當 時,可輕易發現 s-凸函數變成定義域在 的一般凸函數。
    由Pearce and Pečarić和Kirmaci et al.所證出的定理是計算(1.1)式的中間項和右項的差。而這篇論文的主要研究目的則是探討(1.1)式的中間項和左項的差。
    The following inequalities
    . (1.1)
    which hold for all convex mappings are known in the literature as Hadamard’s inequality. We note that J. Hadamard was not the first who discovered them. As is pointed out by D.S. Mitrinović and I.B. Lačković, the inequalities (1.1) are due to C.Hermite who obtained them in 1883, ten years before J. Hadamard.
    Hudzik and Mailgranda considered, among others, the class of functions which are s-convex in the second sense. This class is defined in the following way: a function is said to be s-convex in the second sense if

    holds for all , [0,1] and for some fixed . The class of s-convex functions in the second sense is denoted by .
    It is easily seen that for , s-convexity reduces to the ordinary convexity of functions defined on .
    The theorems which were proved by Pearce and Pečarić and Kirmaci et al. are estimating the difference between the middle and right terms in (1.1). The aim of this paper is estimating the difference between the middle and left terms in (1.1).
    Appears in Collections:[數學學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML118View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback