English  |  正體中文  |  简体中文  |  Items with full text/Total items : 60696/93562 (65%)
Visitors : 1043797      Online Users : 21
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/74120

    Title: 一維氧化鋅奈米結構自發性與電場控制成長及其物理機制探討
    Other Titles: Spontaneous growth mechanism, electric field control and optical properties of 1D ZnO nanostructures
    Authors: 許詩涵;Hsu, Shih-han
    Contributors: 淡江大學物理學系碩士班
    葉炳宏;Yeh, Ping-Hung
    Keywords: 氧化鋅;Zinc Oxide;奈米線;自發性成長機制;nanowire;Spontaneous growth mechanism
    Date: 2011
    Issue Date: 2011-12-28 18:06:08 (UTC+8)
    Abstract: 氧化鋅奈米元件會操作在不同環境條件,當元件操作於濕度
    氧化鋅奈米結構置於相對濕度在80%±5%時,約18 小時的時間可
    於70%±5%區間,氧化鋅奈米線無法在18 小時內成長分枝結構,
    但當時間拉長至20 天時,氧化鋅奈米線本體亦可成長出分枝結
    Zinc oxide nanowires devices will be operated in different
    environment conditions, the morphology of ZnO NWs will be variant due to the humidity, gas and chemical convictions. This study was focused on the spontaneous growth mechanism of ZnO NWs in different humidity.
    Around RH80%±5%, the branch ZnO nanostructures were fabricated from the origin ZnO NWs within 18hr. Around RH70%±5%,the branch ZnO NWs did not growth until 20days.When the humidity over RH85%,the branch ZnO were not fabricated even if for long time that’s due to the origin ZnO NWs surface cannot nucleated. The branch ZnO NWs synthesized in room temperature and analyzed by OM、SEM and TEM.By using electric field, the growth direction of the brench ZnO NWs can be controlled. In this research work, the regrowth mechanism can be figured out and the ZnO-based NWs devices can be operated in different environment conditions without degenerating efficiency.
    Appears in Collections:[Graduate Institute & Department of Physics] Thesis

    Files in This Item:

    File SizeFormat

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback