English  |  正體中文  |  简体中文  |  Items with full text/Total items : 62805/95882 (66%)
Visitors : 3971465      Online Users : 431
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/74117

    Title: The asymptotic iteration method (AIM) applied to QNMs of black holes
    Other Titles: 利用漸近疊代方法研究黑洞準正則模的性質
    Authors: 黃騰銳;Huang, Teng-Rui
    Contributors: 淡江大學物理學系碩士班
    曹慶堂;Cho, Hing-Tong
    Keywords: 黑洞;準正則模;漸近疊代方法;微擾方程;Black hole;QNM;AIM;Perturbation
    Date: 2011
    Issue Date: 2011-12-28 18:06:02 (UTC+8)
    Abstract: 我們在這篇論文裡說明如何運用漸近疊代方法(the asymptotic iteration method),計算四維時空裡不同黑洞(Schwarzschild、Reissner-Nordström和Kerr)的準正則模(quasinormal modes)。對於Schwarzschild黑洞,我們計算重力微擾的準正則頻率。至於Kerr黑洞,我們則計算純量和重力微擾的準正則頻率。我們特別討論低模的數值結果,並且和之前發表的結果做比較。
    In this thesis we show how to use the asymptotic iteration method (AIM) to numerically calculate the quasinormal modes (QNMs) of different (Schwarzschild, Reissner-Nordström and Kerr) black holes in four-dimensional spacetime. For Schwarzschild black holes, we compute the quasinormal frequencies of the gravitational perturbations. For the Kerr black holes, we consider both the scalar and the gravitational cases. We discuss our results especially for the low-lying modes, and compare them to previously published results.
    DOI: 10.6846%2fTKU.2011.00949
    Appears in Collections:[Graduate Institute & Department of Physics] Thesis

    Files in This Item:

    File Description SizeFormat

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback