English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 54025/88770 (61%)
造訪人次 : 10547939      線上人數 : 31
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/73928


    題名: 應用Copula-GJR-GARCH模型於黃金期貨與白銀期貨之避險
    其他題名: Applying Copula-GJR-GARCH model in the hedging of gold futures and silver futures
    作者: 李莠苓;Lee, You-Ling
    貢獻者: 淡江大學財務金融學系碩士班
    李沃牆
    關鍵詞: 黃金期貨避險;白銀期貨避險;Copula;the hedging of gold futures;the hedging of silver futures
    日期: 2011
    上傳時間: 2011-12-28 17:33:29 (UTC+8)
    摘要: 金融資產報酬通常為厚尾且非常態為主,而過去多數文獻的模型以常態分配為假設,而Copula函數能夠依據個別資料之間的關聯性找出最適之分配,使得模型的運用上更加有彈性。
    本文主要分別利用傳統避險模型、固定條件相關(CCC-GJR-GARCH)模型、動態條件相關(DCC-GJR-GARCH)模型以及以Copula-based GJR-GARCH模型,利用最小變異避險理論為避險績效衡量標準,依據樣本內及樣本外進行避險比率及避險績效的實證,找出最佳的模型,提供最適的避險比率之衡量與績效評估之比較。實證結果發現以Copula 為基礎的GJR-GARCH模型的避險績效較傳統OLS模型佳。
    Financial asset returns are usually fat-tailed and non-Gaussian. In the past, most
    of the literatures have the normal distribution assumption. The Copula functions that
    based on the relationship between the individual assets have more flexible than the
    other models to find the optimal allocation.
    In this paper, we use traditional hedging model, fixed conditional correlation
    (CCC-GJR-GARCH) model, dynamic conditional correlation (DCC-GJR-GARCH)
    model and the Copula-based GJR-GARCH model for the estimation of the optimal
    hedge ratio and the hedging performance measure by the theory of minimum variance.
    Empirical results show that the Copula-based GJR-GARCH models perform more
    effectively in the in-sample test. In addition, all of the dynamic hedging models
    perform more effectively than OLS model in the out-sample test.
    顯示於類別:[財務金融學系暨研究所] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    index.html0KbHTML176檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋