淡江大學機構典藏:Item 987654321/73595
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 59160/92571 (64%)
造訪人次 : 739484      線上人數 : 40
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/73595


    題名: Indirect adaptive self-organizing RBF neural controller design with a dynamical training approach
    作者: Hsu, Chun-Fei;Chiu, Chien-Jung;Tsai, Jang-Zern
    貢獻者: 淡江大學電機工程學系
    關鍵詞: RBF network;Adaptive control;Neural control;Self-organizing;Dynamical learning rate
    日期: 2012-01-01
    上傳時間: 2011-11-29 19:30:24 (UTC+8)
    出版者: Kidlington: Pergamon
    摘要: This study proposes an indirect adaptive self-organizing RBF neural control (IASRNC) system which is composed of a feedback controller, a neural identifier and a smooth compensator. The neural identifier which contains a self-organizing RBF (SORBF) network with structure and parameter learning is designed to online estimate a system dynamics using the gradient descent method. The SORBF network can add new hidden neurons and prune insignificant hidden neurons online. The smooth compensator is designed to dispel the effect of minimum approximation error introduced by the neural identifier in the Lyapunov stability theorem. In general, how to determine the learning rate of parameter adaptation laws usually requires some trial-and-error tuning procedures. This paper proposes a dynamical learning rate approach based on a discrete-type Lyapunov function to speed up the convergence of tracking error. Finally, the proposed IASRNC system is applied to control two chaotic systems. Simulation results verify that the proposed IASRNC scheme can achieve a favorable tracking performance.
    關聯: Expert Systems with Applications 39(1), pp.564–573
    DOI: 10.1016/j.eswa.2011.07.047
    顯示於類別:[電機工程學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    paper.pdf1242KbAdobe PDF207檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋