English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 55025/89277 (62%)
造访人次 : 10606138      在线人数 : 26
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/73595


    题名: Indirect adaptive self-organizing RBF neural controller design with a dynamical training approach
    作者: Hsu, Chun-Fei;Chiu, Chien-Jung;Tsai, Jang-Zern
    贡献者: 淡江大學電機工程學系
    关键词: RBF network;Adaptive control;Neural control;Self-organizing;Dynamical learning rate
    日期: 2012-01-01
    上传时间: 2011-11-29 19:30:24 (UTC+8)
    出版者: Kidlington: Pergamon
    摘要: This study proposes an indirect adaptive self-organizing RBF neural control (IASRNC) system which is composed of a feedback controller, a neural identifier and a smooth compensator. The neural identifier which contains a self-organizing RBF (SORBF) network with structure and parameter learning is designed to online estimate a system dynamics using the gradient descent method. The SORBF network can add new hidden neurons and prune insignificant hidden neurons online. The smooth compensator is designed to dispel the effect of minimum approximation error introduced by the neural identifier in the Lyapunov stability theorem. In general, how to determine the learning rate of parameter adaptation laws usually requires some trial-and-error tuning procedures. This paper proposes a dynamical learning rate approach based on a discrete-type Lyapunov function to speed up the convergence of tracking error. Finally, the proposed IASRNC system is applied to control two chaotic systems. Simulation results verify that the proposed IASRNC scheme can achieve a favorable tracking performance.
    關聯: Expert Systems with Applications 39(1), pp.564–573
    DOI: 10.1016/j.eswa.2011.07.047
    显示于类别:[電機工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    paper.pdf1242KbAdobe PDF191检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈