English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 55025/89277 (62%)
造訪人次 : 10606490      線上人數 : 25
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/73594

    題名: Adaptive dynamic RBF neural controller design for a class of nonlinear systems
    作者: Hsu, Chun-Fei
    貢獻者: 淡江大學電機工程學系
    關鍵詞: Adaptive control;Neural control;Lyapunov stability theorem;DC motor;Chaotic system
    日期: 2011-12
    上傳時間: 2011-11-29 19:26:17 (UTC+8)
    出版者: Amsterdam: Elsevier BV
    摘要: In this paper, an adaptive DRBF neural control (ADNC) system which is composed of a neural controller and a smooth compensator is proposed. The neural controller utilizes a dynamic radial basis function (DRBF) network to online mimic an ideal controller and the smooth compensator is designed to eliminate the effect of the approximation error between the ideal controller and neural controller. The DRBF network can self-organizing its network structure. All the controller parameters of the proposed ADNC system are online tuned in the Lyapunov sense, thus the stability analytic shows the system output can exponentially converge to a small neighborhood of the trajectory command. Finally, the proposed ADNC system is applied to a chaotic system and a DC motor. Simulation and experimental results verify that a favorable tracking performance and no chattering phenomena can be achieved by the proposed ADNC system.
    關聯: Applied Soft Computing 11(8), pp.4607–4613
    DOI: 10.1016/j.asoc.2011.08.001
    顯示於類別:[電機工程學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數
    paper.pdf1187KbAdobe PDF238檢視/開啟



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋