English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 58808/92514 (64%)
造访人次 : 650474      在线人数 : 48
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/73594

    题名: Adaptive dynamic RBF neural controller design for a class of nonlinear systems
    作者: Hsu, Chun-Fei
    贡献者: 淡江大學電機工程學系
    关键词: Adaptive control;Neural control;Lyapunov stability theorem;DC motor;Chaotic system
    日期: 2011-12
    上传时间: 2011-11-29 19:26:17 (UTC+8)
    出版者: Amsterdam: Elsevier BV
    摘要: In this paper, an adaptive DRBF neural control (ADNC) system which is composed of a neural controller and a smooth compensator is proposed. The neural controller utilizes a dynamic radial basis function (DRBF) network to online mimic an ideal controller and the smooth compensator is designed to eliminate the effect of the approximation error between the ideal controller and neural controller. The DRBF network can self-organizing its network structure. All the controller parameters of the proposed ADNC system are online tuned in the Lyapunov sense, thus the stability analytic shows the system output can exponentially converge to a small neighborhood of the trajectory command. Finally, the proposed ADNC system is applied to a chaotic system and a DC motor. Simulation and experimental results verify that a favorable tracking performance and no chattering phenomena can be achieved by the proposed ADNC system.
    關聯: Applied Soft Computing 11(8), pp.4607–4613
    DOI: 10.1016/j.asoc.2011.08.001
    显示于类别:[電機工程學系暨研究所] 期刊論文


    档案 描述 大小格式浏览次数
    paper.pdf1187KbAdobe PDF252检视/开启



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈