English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 58286/91808 (63%)
造訪人次 : 13826932      線上人數 : 75
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/73581

    題名: Robot Visual SLAM in Dynamic Environments
    作者: 王銀添;Wang, Yin-tien;Chi, Chen-tung;Hung, Shiun-kai
    貢獻者: 淡江大學機械與機電工程學系
    關鍵詞: Visual Simultaneous Localization, and Mapping;vSLAM;Speeded-Up Robust Features;SURF;Moving Object Detection (MOD)
    日期: 2011-11-12
    上傳時間: 2011-11-22 10:35:18 (UTC+8)
    出版者: Taiwan Association of Engineering and Technology Innovation
    摘要: This paper focuses on the problem of moving object detection (MOD) in robot visual simultaneous localization and mapping (vSLAM) system. A MOD algorithm is designed using the spatial geometric constraint of the stationary landmarks in the environment. Based on the MOD algorithm, the moving objects can be discriminated from the stationary landmarks. The proposed MOD algorithm is independent of the state estimator and capable of dealing with the kidnapping problem in SLAM automatically. Meanwhile, the method of speeded-up robust feature (SURF) is employed in the algorithm to provide a robust detection for image features as well as a better description of landmarks in the map of a visual SLAM system. Experiments are carried out on hand-held camera sensors to verify the performances of the proposed algorithms for SLAM tasks in the indoor environments. The results show that the integration of MOD and SURF is efficient to improve the robustness of robot SLAM system.
    關聯: International Conference on Engineering and Technology Innovation 2011 (ICETI2011), Kenting, Taiwan
    顯示於類別:[機械與機電工程學系暨研究所] 會議論文


    檔案 描述 大小格式瀏覽次數
    C1015_Robot Visual SLAM in Dynamic Environments_5.pdf254KbAdobe PDF1檢視/開啟



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋