English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 56450/90276 (63%)
造訪人次 : 11706816      線上人數 : 49
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/73120


    題名: Face Detection Based on Skin Color Segmentation and Neural Network
    作者: Lin, Hwei-jen;Wang, Shu-yi;Yen, Shwu-huey;Kao, Yang-ta
    貢獻者: 淡江大學資訊工程學系
    日期: 2005-10
    上傳時間: 2011-10-24 11:31:34 (UTC+8)
    出版者: IEEE中國類神經網路協會
    摘要: This paper proposes a human face detection system based on skin color segmentation and neural networks. The system consists of several stages. First, the system searches for the regions where faces might exist by using skin color information and forms a so-called skin map. After performing noise removal and some morphological operations on the skin map, it utilizes the aspect ratio of a face to find out possible face blocks, and then eye detection is carried out within each possible face block. If an eye pair is detected in a possible face block, a region is cropped according to the location of the two eyes, which is called a face candidate; otherwise it is regarded as a non-face block. Finally, each of the face candidates is verified by a 3-layer back-propagation neural network. Experimental results show that the proposed system results in better performance than the other methods, in terms of correct detection rate and capacity of coping with the problems of lighting, scaling, rotation, and multiple faces.
    關聯: Neural Networks and Brain, 2005. ICNN&B '05. International Conference on, pp.1144-1149
    DOI: 10.1109/ICNNB.2005.1614818
    顯示於類別:[資訊工程學系暨研究所] 會議論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    Face Detection Based on Skin Color Segmentation.pdf3935KbAdobe PDF2190檢視/開啟
    index.html0KbHTML222檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋