English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 58323/91876 (63%)
造访人次 : 14082006      在线人数 : 84
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/72755


    题名: Dynamical renormalization group approach to the altarelli-parisi-lipatov equations
    作者: Boyanovsky, D.;de Vega, H.J.;Lee, D.S.;Wang, S.Y.;Yu, H.L.
    贡献者: 淡江大學物理學系
    日期: 2002-01
    上传时间: 2013-07-09 15:09:07 (UTC+8)
    出版者: College Park: American Physical Society
    摘要: The Altarelli-Parisi-Lipatov equations for the parton distribution functions are rederived using the dynamical renormalization group approach to quantum kinetics. This method systematically treats the ln Q^2 corrections that arises in perturbation theory as a renormalization of the parton distribution function and unambiguously indicates that the strong coupling must be allowed to run with the scale in the evolution kernel. To leading logarithmic accuracy the evolution equation is Markovian and the logarithmic divergences in the perturbative expansion are identified with the secular divergences (terms that grow in time) that emerge in a perturbative treatment of the kinetic equations in nonequilibrium systems. The resummation of the leading logarithms by the Altarelli-Parisi-Lipatov equation is thus similar to the resummation of the leading secular terms by the Boltzmann kinetic equation.
    關聯: Physical Review D (Particles and Fields) 65(4), 045014(7 pages)
    DOI: 10.1103/PhysRevD.65.045014
    显示于类别:[物理學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    Dynamical renormalization group approach to the altarelli-parisi-lipatov equations.pdf80KbAdobe PDF0检视/开启
    index.html0KbHTML171检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈