淡江大學機構典藏

Menu Search
查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/72599


    題名: Effects on the two-point correlation function from the coupling of quintessence to dark matter
    作者: Lee, Seokcheon;Liu, Guo-Chin;Ng, Kin-Wang
    貢獻者: 淡江大學物理學系
    日期: 2010
    上傳時間: 2013-07-09 15:08:36 (UTC+8)
    出版者: College Park: American Physical Society
    摘要: We investigate the effects of the nonminimal coupling between the scalar field dark energy (quintessence) and the dark matter on the two- point correlation function. It is well known that this coupling shifts the turnover scale as well as suppresses the amplitude of the matter power spectrum. However, these effects are too small to be observed when we limit the coupling strength to be consistent with observations. Since the coupling of quintessence to baryons is strongly constrained, species dependent coupling may arise. This results in a baryon bias that is dif- ferent from unity. Thus, we look over the correlation function in this coupled model. We find that even the non-coupled quintessence model gives the better fit to the correlation function compared to the cosmo- logical constant model. We are also able to observe the enhancement of the baryon acoustic oscillation (BAO) peak due to the increasing bias factor of baryon from this species dependent coupling. In order to avoid the damping effect of the BAO signature in the matter power spectrum due to nonlinear clustering, we consider the coupling effect on the BAO bump in the linear regime. This provides an alternative method to constrain the coupling of dark energy to dark matter.
    關聯: Physical Review D 81(6), 061302(5pages)
    DOI: 10.1103/PhysRevD.81.061302
    顯示於類別:[物理學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    1550-2368_81(6)p061302(5pages).pdf266KbAdobe PDF269檢視/開啟
    index.html0KbHTML318檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章
    DSpace Software Copyright © 2002-2004  MIT &  HP  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋