English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64178/96951 (66%)
造訪人次 : 9385355      線上人數 : 242
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/72515


    題名: Improved estimation of portfolio value-at-risk under copula models with mixed marginals
    作者: 劉威漢;Miller, Douglas
    貢獻者: 淡江大學財務金融學系
    日期: 2006-08
    上傳時間: 2011-10-24 10:31:31 (UTC+8)
    出版者: Hoboken: John Wiley & Sons, Inc.
    摘要: Portfolio value-at-risk (PVAR) is widely used in practice, but recent criticisms have focused on risks arising from biased PVAR estimates due to model specification errors and other problems. The PVAR estimation method proposed in this article combines generalized Pareto distribution tails with the empirical density function to model the marginal distributions for each asset in the portfolio, and a copula model is used to form a joint distribution from the fitted marginals. The copula–mixed distribution (CMX) approach converges in probability to the true marginal return distribution but is based on weaker assumptions that may be appropriate for the returns data found in practice. CMX is used to estimate the joint distribution of log returns for the Taiwan Stock Exchange (TSE) index and the associated futures contracts on SGX and TAIFEX. The PVAR estimates for various hedge portfolios are computed from the fitted CMX model, and backtesting diagnostics indicate that CMX outperforms the alternative PVAR estimators.
    關聯: Journal of Futures Markets 26(10), pp.997-1018
    DOI: 10.1002/fut.20224
    顯示於類別:[財務金融學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    0270-7314_26(10)p997-1018.pdf266KbAdobe PDF234檢視/開啟
    Improved estimation of portfolio value-at-risk under copula models with mixed marginals.pdf266KbAdobe PDF1檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋