淡江大學機構典藏:Item 987654321/72510
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64198/96992 (66%)
造訪人次 : 7991851      線上人數 : 2575
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/72510


    題名: Frequency Domain Tests of Multivariate Gaussianity and Nonlinearity
    作者: 黃文光
    貢獻者: 淡江大學財務金融學系
    關鍵詞: vectors;testing of multivariate Gaussianity and linearity
    日期: 2007-01
    上傳時間: 2011-10-24 10:31:20 (UTC+8)
    摘要: A stationary multivariate time series {Xt} is defined as linear if it can be written in the form Xt = ∑∞j=−∞Ajet−j where Aj are square matrices and et are independent and identically distributed random vectors. If the et} are normally distributed, then {Xtis a multivariate Gaussian linear process. This paper is concerned with the testing of departures of a vector stationary process from multivariate Gaussianity and linearity using the bispectral approach. First the definition and properties of cumulants of random matrices are used to obtain the expressions for the higher-order cumulant and spectral vectors of a linear vector process as defined above. Then it is shown that linearity of a vector process implies constancy of the modulus square of its normalized higher-order spectra whereas the component of such a vector process does not necessarily have a linear representation. Finally, statistics for the testing of multivariate Gaussianity and linearity are proposed.
    關聯: Journal of Time Series Analysis 18(2) , pp.181-194
    DOI: 10.1111/1467-9892.00045
    顯示於類別:[財務金融學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    Frequency Domain Tests of Multivariate Gaussianity and Nonlinearity.pdf296KbAdobe PDF210檢視/開啟
    index.html0KbHTML141檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋