English  |  正體中文  |  简体中文  |  Items with full text/Total items : 64191/96979 (66%)
Visitors : 8130905      Online Users : 9984
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/72351


    Title: Convergence of weighted sums of tight random elements
    Authors: Wei, Duan
    Contributors: 淡江大學財務金融學系
    Keywords: Random elements;weighted sums;tightness;symmetry;Schauder basis;convergence in probability and almost surely;laws of large numbers;Banach spaces and Fréchet spaces
    Date: 1978-01-01
    Issue Date: 2011-10-24 10:23:06 (UTC+8)
    Abstract: Convergence of weighted sums of tight random elements {Vn} (in a separable Banach space) which have zero expected values and uniformly bounded rth moments (r > 1) is obtained. In particular, if {ank} is a Toeplitz sequence of real numbers, then | Σk=1∞ ankf(Vk)| → 0 in probability for each continuous linear functional f if and only if ‖Σk=1∞ ankVk ‖→ 0 in probability. When the random elements are independent and max1≤k≤n | ank | = O(n−8) for some 0 < 1s < r − 1, then |Σk=1∞ ankVk ‖→ 0 with probability 1. These results yield laws of large numbers without assuming geometric conditions on the Banach space. Finally, these results can be extended to random elements in certain Fréchet spaces.
    Relation: Journal of multivariate analysis 8(2), pp.282-294
    DOI: 10.1016/0047-259X(78)90080-5
    Appears in Collections:[財務金融學系暨研究所] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML158View/Open
    全文.pdf592KbAdobe PDF164View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback