淡江大學機構典藏:Item 987654321/72297
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64191/96979 (66%)
造访人次 : 8444750      在线人数 : 7804
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/72297


    题名: Redefinition of the KMV model's optimal default point based on genetic algorithms – Evidence from Taiwan
    作者: Lee, Wo-Chiang
    贡献者: 淡江大學財務金融學系
    关键词: Credit risk;KMV;Default probability;Quantile regression;Genetic algorithms
    日期: 2011-08
    上传时间: 2011-10-24 10:20:30 (UTC+8)
    出版者: Kidlington: Pergamon
    摘要: In this paper, we propose a new method based on genetic algorithms to solve the optimal default point of the KMV model. In our empirical study, we compare the GA-KMV model with the QR-KMV and KMV models. The results indicate that the percentage of correctness of the GA-KMV model is higher than those for the other two models. This is to say, the GA-KMV model has a better goodness of fit. We also obtain the optimal default point for a Taiwan listed company. This can help us to predict the default point and improve the bank’s risk management performance.
    關聯: Expert Systems With Applications 38(8), pp.10107–10113
    DOI: 10.1016/j.eswa.2011.02.084
    显示于类别:[財務金融學系暨研究所] 期刊論文

    文件中的档案:

    档案 大小格式浏览次数
    index.html0KbHTML166检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈