English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 56816/90588 (63%)
造訪人次 : 12104701      線上人數 : 53
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/72286

    題名: Hedging Derivative Securities with Genetic Programming
    其他題名: 應用遺傳規畫於衍生性商品避險
    作者: 李沃牆;Chen, Shu-heng;Yeh, Chi-she
    貢獻者: 淡江大學財務金融學系
    日期: 1999-12
    上傳時間: 2011-10-24 10:19:58 (UTC+8)
    摘要: One of the most recent applications of GP to finance is to use genetic programming to derive option pricing formulas. Earlier studies take the Black–Scholes model as the true model and use the artificial data generated by it to train and to test GP. The aim of this paper is to provide some initial evidence of the empirical relevance of GP to option pricing. By using the real data from S&P 500 index options, we train and test our GP by distinguishing the case in‐the‐money from the case out‐of‐the‐money. Unlike most empirical studies, we do not evaluate the performance of GP in terms of its pricing accuracy. Instead, the derived GP tree is compared with the Black–Scholes model in its capability to hedge. To do so, a notion of tracking error is taken as the performance measure. Based on the post‐sample performance, it is found that in approximately 20% of the 97 test paths GP has a lower tracking error than the Black–Scholes formula. We further compare our result with the ones obtained by radial basis functions and multilayer perceptrons and one‐stage GP.
    關聯: International Journal of Intelligent Systems in Accounting Finance and Management 4(8), pp.14
    DOI: 10.1002/(SICI)1099-1174(199912)8:4%3C237::AID-ISAF174%3E3.0.CO;2-J
    顯示於類別:[財務金融學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數
    應用遺傳規畫於衍生性商品避險.pdf193KbAdobe PDF0檢視/開啟



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋