淡江大學機構典藏:Item 987654321/72281
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64191/96979 (66%)
造訪人次 : 8532095      線上人數 : 8706
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/72281


    題名: Forecasting High-Frequency Financial Data Volatility Via Nonparametric Algorithms: Evidence From Taiwan'S Financial Markets
    其他題名: 利用無母數法來預測高頻率的財務資料波動率-台灣金融市場實證研究
    作者: Lee, Wo-chiang
    貢獻者: 淡江大學財務金融學系
    關鍵詞: Integrated volatility;genetic programming;artificial neural networks
    日期: 2006-12
    上傳時間: 2011-10-24 10:19:47 (UTC+8)
    出版者: Singapore: World Scientific Publishing
    摘要: This paper uses two computational intelligence algorithms, namely, artificial neural networks (ANN) and genetic programming (GP), for forecasting the volatility of high-frequency TAIEX financial data with four different horizons and compares the out-sample forecasting performance with the GARCH(1,1), EGRACH(1,1) and GJR-GARCH(1,1) models. Based on intraday integrated volatility, the mean squared error (MSE), mean absolute error (MAE), mean absolute percentage error (MAPE), Theil's U and the VaR backtest are used as performance indexes. Our empirical results reveal that the GP and ANN perform reasonably well in forecasting out-sample volatility compared to other parametric volatility forecasting models for most of the performance indexes. Our results also suggest that nonparametric computational intelligence algorithms are powerful for modeling the volatility of high-frequency intraday financial data.
    關聯: New Mathematics and Natural Computation Journal 2(3), pp.345-359
    DOI: 10.1142/S1793005706000543
    顯示於類別:[財務金融學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    Forecasting High-Frequency Financial Data Volatility Via Nonparametric Algorithms: Evidence From Taiwan'S Financial Markets.pdf274KbAdobe PDF104檢視/開啟
    index.html0KbHTML152檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋