淡江大學機構典藏:Item 987654321/72281
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64178/96951 (66%)
造访人次 : 9304577      在线人数 : 204
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/72281


    题名: Forecasting High-Frequency Financial Data Volatility Via Nonparametric Algorithms: Evidence From Taiwan'S Financial Markets
    其它题名: 利用無母數法來預測高頻率的財務資料波動率-台灣金融市場實證研究
    作者: Lee, Wo-chiang
    贡献者: 淡江大學財務金融學系
    关键词: Integrated volatility;genetic programming;artificial neural networks
    日期: 2006-12
    上传时间: 2011-10-24 10:19:47 (UTC+8)
    出版者: Singapore: World Scientific Publishing
    摘要: This paper uses two computational intelligence algorithms, namely, artificial neural networks (ANN) and genetic programming (GP), for forecasting the volatility of high-frequency TAIEX financial data with four different horizons and compares the out-sample forecasting performance with the GARCH(1,1), EGRACH(1,1) and GJR-GARCH(1,1) models. Based on intraday integrated volatility, the mean squared error (MSE), mean absolute error (MAE), mean absolute percentage error (MAPE), Theil's U and the VaR backtest are used as performance indexes. Our empirical results reveal that the GP and ANN perform reasonably well in forecasting out-sample volatility compared to other parametric volatility forecasting models for most of the performance indexes. Our results also suggest that nonparametric computational intelligence algorithms are powerful for modeling the volatility of high-frequency intraday financial data.
    關聯: New Mathematics and Natural Computation Journal 2(3), pp.345-359
    DOI: 10.1142/S1793005706000543
    显示于类别:[財務金融學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    Forecasting High-Frequency Financial Data Volatility Via Nonparametric Algorithms: Evidence From Taiwan'S Financial Markets.pdf274KbAdobe PDF104检视/开启
    index.html0KbHTML152检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈