淡江大學機構典藏:Item 987654321/72276

淡江大學機構典藏

Menu Search
查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/72276


    题名: Uncovering Nonlinear Structure in Real-Time Stock Market Indices
    作者: 黃文光;Abyankar;Copeland
    贡献者: 淡江大學財務金融學系
    日期: 1997-01-01
    上传时间: 2011-10-24 10:19:34 (UTC+8)
    摘要: This article tests for nonlinear dependence and chaos in real-time returns on the world's four most important stock-market indexes. Both the Brock–Dechert–Scheinkman and the Lee, White, and Granger neural-network-based tests indicate persistent nonlinear structure in the series. Estimates of the Lyapunov exponents using the Nychka, Ellner, Gallant, and McCaffrey neural-net method and the Zeng, Pielke, and Eyckholt nearest-neighbor algorithm confirm the presence of nonlinear dependence in the returns on all indexes but provide no evidence of low-dimensional chaotic processes. Given the sensitivity of the results to the estimation parameters, we conclude that the data are dominated by a stochastic component.
    關聯: Journal of Business, Economics and Statistics 15, pp.14
    DOI: 10.1080/07350015.1997.10524681
    显示于类别:[財務金融學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML197检视/开启
    全文.pdf1718KbAdobe PDF76检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章
    DSpace Software Copyright © 2002-2004  MIT &  HP  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈