English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64185/96962 (66%)
造訪人次 : 12728626      線上人數 : 3523
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/72276


    題名: Uncovering Nonlinear Structure in Real-Time Stock Market Indices
    作者: 黃文光;Abyankar;Copeland
    貢獻者: 淡江大學財務金融學系
    日期: 1997-01-01
    上傳時間: 2011-10-24 10:19:34 (UTC+8)
    摘要: This article tests for nonlinear dependence and chaos in real-time returns on the world's four most important stock-market indexes. Both the Brock–Dechert–Scheinkman and the Lee, White, and Granger neural-network-based tests indicate persistent nonlinear structure in the series. Estimates of the Lyapunov exponents using the Nychka, Ellner, Gallant, and McCaffrey neural-net method and the Zeng, Pielke, and Eyckholt nearest-neighbor algorithm confirm the presence of nonlinear dependence in the returns on all indexes but provide no evidence of low-dimensional chaotic processes. Given the sensitivity of the results to the estimation parameters, we conclude that the data are dominated by a stochastic component.
    關聯: Journal of Business, Economics and Statistics 15, pp.14
    DOI: 10.1080/07350015.1997.10524681
    顯示於類別:[財務金融學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML197檢視/開啟
    全文.pdf1718KbAdobe PDF76檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋