English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 62805/95882 (66%)
造訪人次 : 3882228      線上人數 : 333
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/71833

    題名: Immobilization of l-lysine on dense and porous poly(vinylidene fluoride) surfaces for neurons culture
    作者: Lin, Dar-jong;Chang, Chi-lin;Chang, Hsu-hsien;Cheng, Liao-ping;Young, Tai-horng;Lu, Jui-nan
    貢獻者: 淡江大學化學工程與材料工程學系
    關鍵詞: Poly(vinylidene fluoride);Porous;Membrane;Immobilization;l-lysine
    日期: 2008-03-01
    上傳時間: 2011-10-24 01:47:05 (UTC+8)
    摘要: Microporous poly(vinylidene fluoride) (PVDF) membranes with either dense or porous surface were prepared by isothermal immersion-precipitation of a casting solution in coagulation baths of different strengths. Onto the membrane surface, an amino acid (l-lysine) was immobilized by a dual-step chemical process. First, the membrane was grafted with poly(acrylic acid) (PAA) by means of plasma-induced free radical polymerization. Then, l-lysine was covalently bonded to the as-grafted PAA chains with the aid of a water-soluble carbodiimide, 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (EDC). The highest attainable graft yield of PAA on PVDF membrane reached up to 0.64 mg/cm2. For immobilization of l-lysine on the membrane, the yields were found to depend on factors, such as concentration of EDC, activation time, and pH value. The maximal attainable immobilization yield was 0.65 μg/cm2. Furthermore, pheochromocytoma (PC12) cells were cultured on l-lysine/PAA/PVDF membranes. It was found that both the amount of l-lysine on the membrane and the surface structure had a marked influence on the cell activity. Thus, the present results could be useful for the development of strategies to promote the re-growth and regeneration of tissue in the nervous system.
    關聯: Desalination 234, pp.134-143
    DOI: 10.1016/j.desal.2007.09.079
    顯示於類別:[化學工程與材料工程學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數
    Immobilization of l-lysine on dense and porous poly(vinylidene fluoride) surfaces for neurons culture.pdf840KbAdobe PDF23檢視/開啟



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋