English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 62570/95226 (66%)
造访人次 : 2505497      在线人数 : 228
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/71784

    题名: Formation of Porous poly(vinylidene fluoride) membranes with symmetric or asymmetric morphology by immersion precipitation in water/TEP/PVDF system
    作者: Lin, Ta-jung;Lin, Dar-jong;Chang, Hsu-hsien;Chen, Tzung-chin;Lee, Yi-chi;Cheng, Liao-ping
    贡献者: 淡江大學化學工程與材料工程學系
    关键词: Poly(vinylidene fluoride);Membrane;Crystallization;Phase separation
    日期: 2006-07
    上传时间: 2011-10-24 01:41:42 (UTC+8)
    出版者: Kidlington: Pergamon
    摘要: The phase equilibrium boundaries of the membrane forming system, water/triethyl phosphate (TEP)/PVDF, at 25 °C were determined experimentally using cloud-point and equilibrium absorption methods. Based on the phase diagram, appropriate dope and bath compositions were selected to prepare microporous membranes by means of the isothermal immersion–precipitation technique. As a metastable casting dope with respect to crystallization was adopted, the formed membranes exhibited a uniform cross-section composed of interlocked crystal elements coexisting with the network of continuous pores, as was revealed by high resolution FESEM imaging. Morphologies of the membranes’ top surfaces were found to depend heavily on the bath strength, which was controlled by the TEP content. By changing the bath gradually from pure water to 70% TEP, the top surface evolved from a dense skin (asymmetric membrane) to a totally porous morphology (symmetric membrane). Wide angle X-ray diffraction analysis indicated that PVDF crystallized into α-type structure for all of the synthesized membranes. The crystallinity as determined from diffraction peak deconvolution was ≈65%, which value was confirmed by Differential Scanning Calorimetry (DSC). The obtained thermograms also showed a similar melting peak temperature (Tm ≈ 169 °C) for all membranes. Furthermore, water fluxes and tensile strengths of the membranes were measured. The results were found to correlate with the morphologies of the membranes.
    關聯: European polymer journal 42, pp.1581-1594
    DOI: 10.1016/j.eurpolymj.2006.01.027
    显示于类别:[化學工程與材料工程學系暨研究所] 期刊論文


    档案 大小格式浏览次数



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈