English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 62805/95882 (66%)
造訪人次 : 3983354      線上人數 : 573
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/70969

    題名: Experimental and simulation study of an air gap membrane distillation module with solar absorption function for desalination
    作者: Chang, Cheng-liang;Wang, Po-hsiang;Li, Chien-chang;Ho, Chii-dong;Chang, Hsuan
    貢獻者: 淡江大學化學工程與材料工程學系
    關鍵詞: Air gap membrane distillation;Desalination;Modeling;Optimization;Solar energy
    日期: 2010-06-30
    上傳時間: 2011-10-24 00:35:46 (UTC+8)
    出版者: Norwegian University of Science and Technology
    摘要: Being capable of directly utilizing solar thermal energy, the solar driven membrane distillation desalination system has evolved as a promising technology for alleviating the energy and water resource problems. An innovative device for desalination, which is a hybrid of a solar collector and a membrane distillation, called SAF–AGMD (air gap membrane distillation with solar absorption function) is proposed. The experimental and simulation results are reported. The experimental results validate the feasibility of the design and the water production rate is enhanced by 2–8% compared to the simple AGMD module. The mathematic model takes into account the heat and mass transfers via correlations from the literature. The model is verified by the experimental data under different conditions, including the temperature and flow rate of inlet fluids, the air gap thickness and the solar radiation. The differences between the model predication and the experimental results are within 10%. The model is further incorporated with the experimental design method and response surface method for the optimization study. Considering water production and exergy loss, the optimal operation should use hot fluid of 325 K, cold fluid of 298 K and air gap thickness of 1.9 mm.
    關聯: Membranes in Drinking and Industrial Water Treatment
    顯示於類別:[化學工程與材料工程學系暨研究所] 會議論文





    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋