English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 55184/89457 (62%)
造访人次 : 10665710      在线人数 : 22
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/69952


    题名: Prediction of Flutter Derivatives Using Artificial Neural Networks
    作者: Chen, C. H.;Lin, Y. Y.;Chen, J. H.
    贡献者: 淡江大學土木工程學系
    关键词: artificial neural network;flat plate;flutter derivative;wind tunnel test
    日期: 2006-07
    上传时间: 2011-10-23 20:38:04 (UTC+8)
    出版者: Yokohama: Japan Association for Wind Engineering
    摘要: This paper develops an artificial neural network (ANN) algorithm to predict the
    flutter derivatives of rectangular section models. Firstly, the ANN model uses the
    experimental dynamic responses of the section model in smooth flow to train a
    back-propagation (BP) neural network frame. The flutter derivatives can be determined using
    weight matrices in the neural network. The second part of this study is to predict the flutter
    derivatives of the rectangular section models without wind tunnel tests. Based on the given
    flutter derivatives of the rectangular section models tested in wind tunnel, the prediction
    frames of neural network are then established. The flutter derivatives of the rectangular
    section models, with the B/D ratios other than those obtained from the wind tunnel tests can
    be predicted by using this approach. The results show that this prediction scheme is
    reasonably well. By using this ANN approach, the database of the aerodynamic coefficients of
    bridge sections could be expanded.
    關聯: The Fourth International Symposium on Computational Wind Engineering, 4p.
    显示于类别:[土木工程學系暨研究所] 會議論文

    文件中的档案:

    没有与此文件相关的档案.

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈