English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 56826/90592 (63%)
造訪人次 : 12130765      線上人數 : 150
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/69231

    題名: Predicting Type II Censored Data from 2^k Factorial Designs for the Weibull Distribution
    作者: Tsai, Tzong-Ru;Lin, Feng-Tse;Chiang, Jyun-You
    貢獻者: 淡江大學統計學系
    關鍵詞: Type II censored data;Maximum likelihood predictor;Modified maximum likelihood predictor;Robust 2k factorial design;Weibull distribution
    日期: 2009-12
    上傳時間: 2011-10-23 16:40:44 (UTC+8)
    出版者: Kumamoto: I C I C International
    摘要: Experimenters often employ censoring schemes in life tests to shorten the test time or to reduce the test cost. However, censoring restricts the ability to observe failure times exactly. If the lifetime distribution is not normal, incomplete information contained in censored data often causes difficulties with employing the experimental design methods to conduct statistical inferences in engineering applications. The paper develops three new modified maximum likelihood predictors (MMLPs) to predict type II censored data for the Weibull distribution. Once the censored data are predicted, the predicted information can be merged with uncensored data as a pseudo-complete data set. The robust 2^k factorial design method [13] can be employed to identify the significant factors from the experiment for the pseudo-complete data set. A Monte Carlo simulation study is conducted to evaluate the performance of the proposed method, and an example regarding engineering is presented for illustration.
    關聯: International Journal of Innovative Computing, Information and Control 5(12)pt.A, pp.4415-4429
    顯示於類別:[統計學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數
    1349-4198_5(12A)p4415-4429.pdf7813KbAdobe PDF3檢視/開啟



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋