淡江大學機構典藏:Item 987654321/69215
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 58323/91877 (63%)
造訪人次 : 14294868      線上人數 : 76
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/69215


    題名: On study of kernel regression function polygons
    作者: 鄧文舜;Deng, Wen-shuenn;Chu, C.K.
    貢獻者: 淡江大學統計學系
    日期: 2000-01-01
    上傳時間: 2011-10-23 16:37:42 (UTC+8)
    摘要: In the case of the random design nonparametric regression, the regression function estimate is produced practically by joining every two consecutive kernel estimates of regression function values by a straight line segment. Hence, it is of polygon type, and is called the kernel regression function polygon (KRFP) in this paper. The KRFP is analyzed by its asymptotic integrated mean square error (AIMSE). This AIMSE precisely quantifies both effects of the kernel function and of the distance between the points on which kernel estimates of regression function values are calculated on the KRFP. By studying the AIMSE, we have the following findings. First of all, if the distance is of smaller order in magnitude than the bandwidth used by the kernel regression function estimator, then Epanechnikov kernel is still the optimal kernel function for the KRFP. Secondly, if the distance is of the same order in magnitude as the bandwidth, then Epanechnikov kernel is no longer optimal for the KRFP. In this case, using the AIMSE of the KRFP, we obtain the optimal kernel for the KRFP over the class of two-degree polynomials by numerical calculation. As the distance increases, the computation time of the KRFP decreases. However, the resulting performance of the KRFP deteriorates, since the minimum AIMSE of the KRFP over both the bandwidth and the kernel function increases. Finally, if the distance is of larger order in magnitude than the bandwidth, then the uniform kernel is the optimal kernel function for the KRFP.
    關聯: Journal of nonparametric statistics 12(5), pp.597-609
    DOI: 10.1080/10485250008832824
    顯示於類別:[統計學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    index.html0KbHTML8檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋