淡江大學機構典藏:Item 987654321/69195
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64178/96951 (66%)
造访人次 : 10023597      在线人数 : 19403
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/69195


    题名: GEE Modeling with Longitudinal Binary Data: Goodness-of-Fit Assessment via Local Polynomial Smoothing
    作者: Lin, K. C.;Chen, Y. J.
    贡献者: 淡江大學統計學系
    关键词: Bootstrap;GEE model;Goodness-of-fit;Logistic regression;Longitudinal binary data;Nonparametric smoothing
    日期: 2009-03-01
    上传时间: 2011-10-23 16:33:56 (UTC+8)
    摘要: Analysis of longitudinal binary data is often accomplished by using GEE methodology to estimate the marginal model parameters. Most of current goodness-of-fit tests for GEE models have been studied in parametric situations. In this article, we consider to develop an alternative assessment for GEE models utilizing nonparametric technique. The proposed test avoided the explosion of a large number of additional parameters and dependence on partition of covariate space. Even though exact expectation and variance of the proposed test statistic are analytically and computationally infeasible, approximated values based on bootstrap data are employed. The asymptotic distribution of the proposed test statistic in terms of a scaled chi-squared distribution, and comparison of the proposed test and the current methods with respect to power are discussed by simulation studies. In addition, the testing procedure is illustrated by a medical study from Koch et al. [12].
    關聯: International Journal of Intelligent Technology ; Applied Statistics 2, pp.77-88
    DOI: 10.6148/IJITAS.2009.0201.06
    显示于类别:[統計學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    GEE Modeling with Longitudinal Binary Data Goodness-of-Fit Assessment via Local Polynomial Smoothing.pdf4374KbAdobe PDF1检视/开启
    index.html0KbHTML100检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈